
A P P E N D I X B

Answers and Hints to Problems

CHAPTER 2

2.1 (a) A + B =
(

7 0 7
13 14 3

)
, A − B =

(
1 4 −1
1 −4 13

)

(b) A′A =

 65 43 68

43 29 46
68 46 73


 , AA′ =

(
29 62
62 138

)

2.2 (a) (A + B)′ =

 7 13

0 14
7 3


 , A′ + B′ =


 7 13

0 14
7 3




(b) A′ =

 4 7

2 5
3 8


 , (A′)′ =

(
4 2 3
7 5 8

)
= A

2.3 (a) AB =
(

5 15
3 −5

)
, BA =

(
2 6

11 −2

)
(b) |AB| = −70, |A| = −7, |B| = 10

2.4 (a) A + B =
(

3 3
3 4

)
, tr(A + B) = 7

(b) tr(A) = 0, tr(B) = 7

2.5 (a) AB =
(

4 1
3 −3

)
, BA =


 −1 8 7

2 4 6
1 −3 −2




(b) tr(AB) = 1, tr(BA) = 1
2.6 (b) x = ( 1 1 −1 )′
2.7 (a) Bx = (13, 6, 9)′ (b) y′B = (25,−1, 17) (c) x′Ax = 16

(d) x′Ay = 43 (e) x′x = 6 (f) x′y = 3

(g) xx′ =

 1 −1 2

−1 1 −2
2 −2 4



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592 ANSWERS AND HINTS TO PROBLEMS

(h) xy′ =

 3 2 1

−3 −2 −1
6 4 2




(i) B′B =

 62 7 22

7 14 7
22 7 41




2.8 (a) x + y = (4, 1, 3)′, x − y = (−2,−3, 1)′
(b) (x − y)′A(x − y) = −31

2.9 Bx = b1x1 + b2x2 + b3x3

= (1)




3

7

2


+ (−1)




−2

1

3


+ (2)




4

0

5


 =




13

6

9




2.10 (a) (AB)′ =

 7 16

8 4
7 11


 , B′A′ =


 7 16

8 4
7 11


 (c) |A| = 5

2.11 (a) a′b = 5, (a′b)2 = 25

(b) bb′ =

 4 2 6

2 1 3
6 3 9


 , a′(bb′)a = 25

2.12 DA =

 a 2a 3a

4b 5b 6b
7c 8c 9c


 , AD =


 a 2b 3c

4a 5b 6c
7a 8b 9c


,

DAD =

 a2 2ab 3ac

4ab 5b2 6bc
7ac 8bc 9c2




2.13 AB =



8 9 5 6
7 5 5 4

3 4 2 2




2.14 AB =
(

3 5
1 4

)
, CB =

(
3 5
1 4

)
2.15 (a) tr(A) = 5, tr(B) = 5

(b) A + B =

 6 4 5

2 −2 1
4 9 6


 , tr(A + B) = 10

(c) |A| = 0, |B| = 2

(d) AB =

 9 12 17

3 −1 5
6 13 12


 , det(AB) = 0
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ANSWERS AND HINTS TO PROBLEMS 593

2.16 (a) |A| = 36 (b) T =

 1.7321 2.3094 1.7321

0.0 1.6330 1.2247
0.0 0.0 2.1213




2.17 (a) det(A) = 1 (b) T =

 1.7321 −2.8868 −.5774

0.0 2.1602 −.7715
0.0 0.0 .2673




2.18 (a) C =

 .4082 −.5774 .7071
.8165 .5774 .0000
.4082 −.5774 −.7071




2.19 (a) Eigenvalues: 2, 1, −1

Eigenvectors:


 .3015
.9045
.3015


 ,


 .7999
.5368
.2684


 ,


 .7071

0
.7071




(b) tr(A) = 2, |A| = −2

2.20 (a) C =

 .0000 .5774 −.8165

−.7071 −.5774 −.4082
.7071 −.5774 −.4082




(b) C′AC =

 −2 0 0

0 1 0
0 0 4


 (c) CDC′ =


 3 1 1

1 0 2
1 2 0


 = A

2.21 Eigenvalues: 1, 3, C =
( −.7071 −.7071

−.7071 .7071

)
,

A1/2 = CD1/2C′ =
(

1.3660 −.3660
−.3660 1.3660

)

2.22 (a) The spectral decomposition of A is given by A = CDC′, where

C =

 .455 −.580 .675
.846 .045 −.531
.278 .813 .511


 and D = diag(13.542, 3.935,−2.477).

(b) The spectral decomposition of A2 is given by A2 = CDC′, where C is the
same as in part (a) and D = diag(183.378, 15.486, 6.135). Note that the
diagonal elements of D are the squares of the diagonal elements of D in
part (a).

(c) The spectral decomposition of A−1 is given by A−1 = CDC′, where

C =

 −.580 .455 .675

.045 .846 −.531

.813 .278 .511


 and D = diag(.254, .074,−.404).
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594 ANSWERS AND HINTS TO PROBLEMS

The diagonal elements of D are the reciprocals of those of D in part (a).
The first two columns of C have been interchanged to match the inter-
change of the corresponding elements of D; that is, D = (1/λ2, 1/λ1,
1/λ3).

2.23 A = UDV′, where D = diag(13.161, 7, 000, 3.433),

U =




.282 −.730 .424

.591 −.146 .184
−.225 .404 .886
.721 .531 −.040


 , V =


 .856 −.015 .517

−.156 .946 .284
.494 .324 −.807




2.24 (a) j′a = (1)a1 + (1)a2 + · · · + (1)an =∑i ai = a′j

(b) j′A = [(1)a11 + (1)a21 + · · · + (1)an1, . . . , (1)a1p

+(1)a2p + · · · + (1)anp]
= (
∑

i ai1,
∑

i ai2, . . . ,
∑

i aip)

(c) Aj =



(1)a11 + (1)a12 + · · · + (1)a1p

(1)a21 + (1)a22 + · · · + (1)a2p
...

...
...

(1)an1 + (1)an2 + · · · + (1)anp


 =



∑

j a1 j∑
j a2 j
...∑
j anj




2.25 (x − y)′(x − y) = (x′ − y′)(x − y) = x′x − x′y − y′x + y′y

= x′x − 2x′y + y′y
2.26 By (2.27), (A′A)′ = A′(A′)′. By (2.6), (A′)′ = A. Thus, (A′A)′ = A′A.

2.27 (a)
∑

i a′xi = a′x1 + a′x2 + · · · + a′xn

= a′(x1 + x2 + · · · + xn) [by (2.21)]

= a′∑
i xi

(b)
∑

i Axi = Ax1 + Ax2 + · · · + Axn

= A(x1 + x2 + · · · + xn) [by (2.21)]

= A
∑

i xi

(c)
∑

i (a
′xi )

2 =∑i a′(xi x′
i )a [by (2.40)]

= a′(
∑

i xi x′
i )a [by (2.29)]

(d)
∑

i Axi (Axi )
′ =∑i Axi x′

i A
′ = A(

∑
i xi x′

i )A
′ [by (2.29)]

2.28 (a) Ax =
(

a′
1

a′
2

)
x =

(
a′

1x
a′

2x

)
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ANSWERS AND HINTS TO PROBLEMS 595

(b) ASA′ =
(

a′
1

a′
2

)
S(a1, a2) =

(
a′

1
a′

2

)
(Sa1,Sa2) [by (2.48)]

=
(

a′
1Sa1 a′

1Sa2
a′

2Sa1 a′
2Sa2

)

2.29 (a) If A =




a′
1

a′
2
...

a′
n


, then by (2.68), A′ = (a1, a2, . . . , an) and

A′A = (a1, a2, . . . , an)




a′
1

a′
2
...

a′
n


 = a1a′

1 + a2a′
2 + · · · + ana′

n [by (2.66)].

2.30 A−1A = I
(A−1A)′ = I′ = I
A′(A−1)′ = I
(A′)−1A′(A−1)′ = (A′)−1I = (A′)−1

(A−1)′ = (A′)−1

2.31
1

b

(
bA−1

11 + A−1
11 a12a′

12A−1
11 −A−1

11 a12

−a′
12A−1

11 1

)(
A11 a12
a′

12 a22

)

= 1

b

(
bI + A−1

11 a12a′
12 − A−1

11 a12a′
12 bA−1

11 a12 + A−1
11 a12a′

12A−1
11 a12 − A−1

11 a12a22

−a′
12 + a′

12 −a′
12A−1

11 a12 + a22

)

= 1

b

(
bI 0
0′ b

)
, where b = a22 − a′

12A−1
11 a12

=
(

I 0
0′ 1

)

2.32 (B + cc′)
(

B−1 − B−1cc′B−1

1 + c′B−1c

)

= I − cc′B−1

1 + c′B−1c
+ cc′B−1 − c(c′B−1c)c′B−1

1 + c′B−1c
[by (2.26)]

= I − cc′B−1

(
1 + c′B−1c

1 + c′B−1c

)
+ cc′B−1 = I
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596 ANSWERS AND HINTS TO PROBLEMS

2.33 |cA| = |cIA|
= |cI||A| [by (2.89)]
= cn|A| [by (2.84)]

2.34 AA−1 = I

|AA−1| = |I|
|A‖A−1| = 1 [by (2.83)]

|A−1| = 1

|A|
2.35 In (2.93) and (2.94), let A11 = B,A12 = c,A21 = −c′, and A22 = 1. Then

equate the right-hand sides of (2.93) and (2.94) to obtain (2.95).

2.36 By (2.52), tr(AA′) =∑n
i=1 a′

i ai =∑n
i=1(a

2
i1 + a2

i2 + · · · + a2
in)

=∑n
i=1
∑n

j=1 a2
i j .

2.37 Show that |C| 
= 0 by taking the determinant of both sides of C′C = I. Thus
C is nonsingular and C−1 exists. Multiply C′C = I on the right by C−1 and
on the left by C.

2.38 Multiply ABx = λx on the left by B. Then λ is an eigenvalue of BA, and Bx
is an eigenvector.

2.39 (a) (A1/2)2 = (CD1/2C′)2 = CD1/2C′CD1/2C′

= CDC′ [by (2.101)]

= A [by (2.109)]

(b) By (2.114), A1/2A1/2 = A. By (2.89),

|A1/2A1/2| = |A|
|A1/2||A1/2| = |A|

|A1/2|2 = |A|

(c) Since A is positive definite, we have, from part (b), |A1/2| = |A|1/2.

CHAPTER 3

3.1 z = ∑n
i=1 zi/n = ∑i ayi/n = (ay1 + · · · + ayn)/n. Now factor a out of the

sum.
3.2 The numerator of s2

z is
∑n

i=1(zi − z)2 =∑i (ayi − ay)2 =∑i [a(yi − y)]2.
3.3 x = 4, y = 4:
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ANSWERS AND HINTS TO PROBLEMS 597

x y x − x y − y (x − x)(y − y)

2 2 −2 −2 4
2 4 −2 0 0
2 6 −2 2 −4
4 2 0 −2 0
4 4 0 0 0
4 6 0 2 0
6 2 2 −2 −4
6 4 2 0 0
6 6 2 2 4

Sum = 0

3.4 x − xj =




x1
x2
...

xn


− x




1
1
...

1


 =




x1
x2
...

xn


−




x
x
...

x


 =




x1 − x
x2 − x
...

xn − x




3.5 yi − y =

 yi1

yi2
yi3


−


 y1

y2
y3


 =


 yi1 − y1

yi2 − y2
yi3 − y3




n∑
i=1

(yi − y)(yi − y)′ =
n∑

i=1


 yi1 − y1

yi2 − y2
yi3 − y3


 (yi1 − y1, yi2 − y2, yi3 − y3)

=
n∑

i=1


 (yi1 − y1)

2 (yi1 − y1)(yi2 − y2) (yi1 − y1)(yi3 − y3)

(yi2 − y2)(yi1 − y1) (yi2 − y2)
2 (yi2 − y2)(yi3 − y3)

(yi3 − y3)(yi1 − y1) (yi3 − y3)(yi2 − y2) (yi3 − y3)
2




3.6 z = ∑n
i=1 zi/n = ∑i a′yi/n = (a′y1 + · · · + a′yn)/n. Now factor out a′ on

the left. See also (2.42).
3.7 The numerator of s2

z is
∑n

i=1(zi − z)2 = ∑
i (a

′yi − a′y)2 = ∑
i (a

′yi −
a′y)(a′yi − a′y). The scalar a′yi is equal to its transpose, as in (2.39). Thus
a′yi = (a′yi )

′ = y′
i a, and

∑
i (a

′yi − a′y)(a′yi − a′y) =∑i (a
′yi − a′y)(y′

i a −
y′a). By (2.22) and (2.24), this becomes

∑
i a′(yi − y)(yi − y)′a. Now factor

out a′ on the left and a on the right. See also (2.44).
3.8 By (3.63) and (3.64),

ASA′ =




a′
1Sa1 a′

1Sa2 · · · a′
1Sak

a′
2Sa1 a′

2Sa2 · · · a′
2Sak

...
...

...

a′
kSa1 a′

kSa2 · · · a′
kSak


 ,

from which the result follows immediately.
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598 ANSWERS AND HINTS TO PROBLEMS

3.9 cov(z) = cov[(�1/2)−1y − (�1/2)−1�]
= (�1/2)−1 cov(y)[(�1/2)−1]′ [by (3.76)]

= (�1/2)−1
(

�

n

)
(�1/2)−1

= 1

n
(�1/2)−1�1/2�1/2(�1/2)−1 [by (2.114)]

= 1

n
I

3.10 Answers are given in Examples 3.6 and 3.7.
3.11 (a) |S| = 459.956 (b) tr(S) = 213.043
3.12 (a) |S| = 27, 236, 586 (b) tr(S) = 292.891

3.13 R =




1.000 .614 .757 .575 .413
.614 1.000 .547 .750 .548
.757 .547 1.000 .605 .692
.575 .750 .605 1.000 .524
.413 .548 .692 .524 1.000




3.14 z = 83.298, s2
z = 1048.659

3.15 rzw = −.6106
3.16 y1 = (1, 0, 0)y = a′y, 1

2 (y2 + y3) = (0, 1
2 ,

1
2 )y = b′y. Use (3.57) to obtain

rzw = .4873.

3.17 (a) z =

 38.369

40.838
−51.727


 , Sz =


 323.64 19.25 −460.98

19.25 588.67 104.07
−460.98 104.07 686.27




(b) Rz =

 1.0000 .0441 −.9781

.0441 1.0000 .1637
−.9781 .1637 1.0000




3.18 (a) y =




48.655
49.625
50.570
51.445


 , S =




6.3300 6.1891 5.7770 5.5348
6.1891 6.4493 6.1534 5.9057
5.7770 6.1534 6.9180 6.9267
5.5348 5.9057 6.9267 7.4331


 ,

R =




1.0000 .9687 .8730 .8069
.9687 1.0000 .9212 .8530
.8730 .9212 1.0000 .9659
.8069 .8530 .9659 1.0000




(b) |S| = 1.0865, tr(S) = 27.1304

3.19 (a) z = 44.1400, s2
z = 21.2309, w = 103.8850, s2

w = 30.8161
(b) szw = 6.5359, rzw = .2555
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ANSWERS AND HINTS TO PROBLEMS 599

3.20 z =

 401.40

−47.55
150.48


 , Sz =


 398.33 −44.35 148.35

−44.35 12.36 −16.90
148.35 −16.90 59.46


 ,

Rz =

 1.00 −.63 .96

−.63 1.00 −.62
.96 −.62 1.00




3.21 (a)
(

y
x

)
=




185.72
151.12

183.84
149.24




(b) S =




95.29 52.87 69.66 46.11
52.87 54.36 51.31 35.05

69.66 51.31 100.81 56.54
46.11 35.05 56.54 45.02




3.22
(

y
x

)
=




70.08
73.54
75.10

109.68
104.24
109.98



,

S =




95.54 17.61 12.18 60.52 23.00 62.84
17.61 73.19 14.25 5.73 61.28 −1.66
12.18 14.25 76.17 46.75 32.77 69.84

60.52 5.73 46.75 808.63 320.59 227.36
23.00 61.28 32.77 320.59 505.86 167.35
62.84 −1.66 69.84 227.36 167.35 508.71




CHAPTER 4

4.1 |�1| = 1, tr(�1) = 20, |�2| = 4, tr(�2) = 15. Thus tr(�1) > tr(�2),
but |�1| < |�2|. When converted to correlations, we have

Pρ1 =

 1.00 .96 .80

.96 1.00 .89

.80 .89 1.00


 , Pρ2 =


 1.00 .87 .41

.87 1.00 .71

.41 .71 1.00


 .

As noted at the end of Section 4.1.3, a decrease in intercorrelations or an
increase in the variances will lead to a larger |�|. In this case, the decrease
in correlations from �1 to �2 outweighed the increase in the variances (the
increase in trace).
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600 ANSWERS AND HINTS TO PROBLEMS

4.2 E(z) = (T′)−1[E(y)− �] [by (3.75)]

= (T′)−1[� − �] = 0,

cov(z) = (T′)−1�[(T′)−1]′ [by (3.76)]

= (T′)−1T′TT−1 [by (2.75) and (2.79)]

= I

4.3 By the last expression in Section 2.3.1,

n∏
i=1

1

(
√

2π)p|�|1/2 = 1

(
√

2π)np|�|n/2 .

The sum in the exponent of (4.13) follows from the basic algebra of exponents.
4.4 Since (y − �)′�−1(y − �) is a scalar, we have E[(y − �)′�−1(y − �)] =

E{tr[(y − �)′�−1(y − �)]} = E{tr[�−1(y − �)(y − �)′]} = tr[�−1 E(y −
�)(y − �)′] = tr(�−1�) = tr(Ip) = p.

4.5 The other two terms are of the form 1
2

∑n
i=1(y − �)′�−1(yi − y), which is

equal to 1
2 [(y−�)′�−1]∑n

i=1(yi −y). This vanishes because
∑n

i=1(yi −y) =
ny − ny = 0.

4.6 We replace yi in
√

b1 by zi = ayi + b. By an extension of (3.3), z = ay + b.
Then (4.18) becomes

√
n
∑n

i=1(zi − z)3

[∑n
i=1(zi − z)2]3/2

=
√

n
∑

i (ayi + b − ay − b)3

[∑i (ayi + b − ay − b)2]3/2

=
√

na3∑
i (yi − y)3

[a2
∑

i (yi − y)2]3/2
=

√
n
∑

i (yi − y)3

[∑i (yi − y)2]3/2
= √b1.

Similarly, if (4.19) is expressed in terms of zi = ayi + b, it reduces to b2 in
terms of yi .

4.7 β2,p = E[(y − �)′�−1(y − �)]2 by (4.33). But when y is Np(�,�), v =
(y−�)′�−1(y−�) is distributed as χ2(p) by property 3 in Section 4.2. Then
E(v2) = var(v)+ [E(v)]2.

4.8 To show that b1,p and b2,p are invariant under the transformation z = Ayi +b,

where A is nonsingular, it is sufficient to show that gi j (z) = (yi −y)′�̂−1(y j −
y). By (3.67) and (3.68), z = Ay + b and �̂z = A�̂A′. Then gi j for z becomes

gi j (z) = (zi − z)′�̂−1
z (z j − z)

= (Ayi + b − Ay − b)′(A�̂A′)−1(Ay j + b − Az − b)

= (yi − y)′A′(A′)−1�̂−1A−1A(y j − y)

= (yi − y)′�̂−1(y j − y) = gi j (y).
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ANSWERS AND HINTS TO PROBLEMS 601

4.9 Let i = (n) in (4.44); then solve for D2
(n) in (4.43) and substitute into (4.44) to

obtain F(n) in terms of w, as in (4.45).
4.10 (a) a′ = (2,−1, 3), z = a′y is N (17, 21)

(b) A =
(

1 1 1
1 −1 2

)
, z = Ay is N2

[(
8

10

)
,

(
29 −1
−1 9

)]
(c) By property 4b in Section 4.2, y2 is N (1, 13).

(d) By property 4a in Section 4.2,

(
y1
y3

)
is N2

[(
3
4

)
,

(
6 −2

−2 4

)]
.

(e) A =

 1 0 0

0 0 1
1
2

1
2 0


 , Ay is N3




 3

4
2


 ,

 6 −2 3.5

−2 4 1
3.5 1 5.25






4.11 (a) z =

 .408 0 0

−.047 .279 0
.285 −.247 .731




 y − 3

y − 1
y − 4




(b) z =

 .465 −.070 .170

−.070 .326 −.166
.170 −.166 .692




 y − 3

y − 1
y − 4




(c) By (4.6), (y − �)′�−1(y − �) is distributed as χ2
3 .

4.12 (a) a′ = (4,−2, 1,−3), z = a′y is N (−30, 153)

(b) A =
(

1 1 1 1
−2 3 1 −2

)
, z = Ay is N2

[(
5
2

)
,

(
27 −79

−79 361

)]

(c) A =

 3 1 −4 −1

−1 −3 1 −2
2 2 4 −5


 ,

z = Ay is N3




 −4

−18
−27


 ,

 35 −18 −6

−18 46 14
−6 14 93






(d) By property 4b in Section 4.2, y3 is N (−1, 2).

(e) By property 4a in Section 4.2,

(
y2
y4

)
is N2

[(
3
5

)
,

(
9 −6

−6 9

)]
.

(f) A =




1 0 0 0
1
2

1
2 0 0

1
3

1
3

1
3 0

1
4

1
4

1
4

1
4


,

Ay is N4






−2
.5
0

1.25


 ,



11 1.5 2 3.75
1.5 1 .67 .875
2 .67 .67 1
3.75 .875 1 1.688





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602 ANSWERS AND HINTS TO PROBLEMS

4.13 (a) z =




.302 0 0 0

.408 .561 0 0
−.087 .261 1.015 0
−.858 −.343 −.686 .972






y + 2
y − 3
y + 1
y − 5




(b) z =




.810 .305 .143 −.479

.305 .582 .249 −.083

.143 .249 1.153 −.298
−.480 −.083 −.298 .787






y + 2
y − 3
y + 1
y − 5




(c) (y − �)′�−1(y − �) = (y − �)′�−1/2�−1/2(y − �) = z′z, which is
χ2(p) = χ2(4).

4.14 The variables in (b), (c), and (d) are independent.
4.15 The variables in (a), (c), (d), (f), (i), (j), and (n) are independent.
4.16 (a) E(y|x) = �y + �yx�−1

xx (x − �x)

=
(

2
−1

)
+
( −3 2

0 4

)(
5 −2

−2 4

)−1 ( x1 − 3
x2 − 1

)

=
(

2
−1

)
+
( −.5 .25

.5 1.25

)(
x1 − 3
x2 − 1

)

=
(

3.25
−3.75

)
+
( −.5 .25

.5 1.25

)(
x1
x2

)
(b) cov(y|x) = �yy − �yx�−1

xx �xy

=
(

7 3
3 6

)
−
( −3 2

0 4

)(
5 −2

−2 4

)−1 ( −3 0
2 4

)

=
(

7 3
3 6

)
−
(

2 1
1 5

)
=
(

5 2
2 1

)
4.17 (a) E(y|x) = �y + �yx�−1

xx (x − �x)

=
(

3
−2

)
+
(

15 0 3
8 6 −2

) 50 8 5
8 4 0
5 0 1




−1
 x1 − 4

x2 + 3
x3 − 5




=
(

3
−2

)
−
(

15
−24.5

)
+
(

0 0 3
.67 .167 −5.33

) x1
x2
x3




=
( −12

22.5

)
+
(

0 0 3
.67 .167 −5.33

) x1
x2
x3




(b) cov(y|x) = �yy − �yx�−1
xx �xy

=
(

14 −8
−8 18

)
−
(

15 0 3
8 6 −2

) 50 8 5
8 4 0
5 0 1




−1
 15 8

0 6
3 −2




=
(

14 −8
−8 18

)
−
(

9 −6
−6 17

)
=
(

5 −2
−2 1

)
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ANSWERS AND HINTS TO PROBLEMS 603

4.18 (a) By the central limit theorem in Section 4.3.2,
√

n(y−�) is approximately
Np(0,�).

(b) y is approximately Np(�,�/n).
4.19 (a) The plots show almost no deviation from normality.

(b) Variable y1 y2 y3 y4

√
b1 .3069 .3111 .0645 .0637

b2 1.932 2.107 1.792 1.570

The values of
√

b1 show a small amount of positive skewness, but none
exceeds the upper 2.5% critical value for

√
b1 given in Table A.1 as .942.

The values of b2 show negative kurtosis. For y4, the kurtosis is significant,
since b2 < 1.74, the lower 2.5 percentile in Table A.3.

(c) Variable y1 y2 y3 y4

D .2848 .2841 .2866 .2851
Y .4021 .2934 .6730 .4491

From Table A.4, the lower 2.5 percentile for Y is −3.04 and the upper
97.5 percentile is .628. We reject the hypothesis of normality only for y3.

(d) z defined in (4.24) is approximately N (0, 3/n). To obtain a N (0,1) statis-
tic, we calculate z∗ = z/

√
3/n.

Variable y1 y2 y3 y4

z∗ −.3366 −.3095 −.0737 −.0856

4.20 (a) i 1 2 3 4 5 6 7 8 9 10

D2
i 1.06 1.60 7.54 3.54 4.61 .63 .81 2.47 .95 3.78

(b) The .05 critical value from Table A.6 is 7.01. D2
(10) = 7.54 > 7.01.

(c) i 1 2 3 4 5 6 7 8 9 10

u(i) .08 .10 .12 .13 .20 .30 .44 .47 .57 .93

vi .07 .13 .18 .23 .28 .34 .40 .47 .55 .68

The plot of (vi , u(i)) shows some evidence of nonlinearity and an outlier.
(d) b1,p = 7.255, b2,p = 14.406. Both (barely) exceed upper .05 critical

values in Table A.5.
4.21 (b) Variable y1 y2 y3 y4 y5

√
b1 .2176 .5857 .7461 −.3327 −.1772

b2 2.079 1.681 2.583 1.774 2.456

None of the values of
√

b1 exceeds 1.134 (from Table A.1) or is less
than −1.134. None of the values of b2 is less than 1.53 (from Table A.3).
Thus there is no significant departure from normality.
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604 ANSWERS AND HINTS TO PROBLEMS

(c) Variable y1 y2 y3 y4 y5

D .279 .269 .275 .281 .276
Y −.305 −1.399 −.805 −.114 −.669

(d) z∗ = z/
√

3/n, where z is defined in (4.24).

Variable y1 y2 y3 y4 y5

z∗ −.4848 −1.7183 −1.3627 .8091 .3686

4.22 (a) i 1 2 3 4 5 6 7 8 9 10 11

D2
i 5.20 2.15 7.63 5.34 5.54 1.73 5.21 5.90 2.72 6.02 2.56

(c) i 1 2 3 4 5 6 7 8 9 10 11

u(i) .19 .24 .28 .30 .57 .57 .59 .61 .65 .66 .84

vi .18 .27 .34 .39 .45 .50 .55 .61 .66 .73 .82

The plot shows a sharp break from the fourth to the fifth points.
(d) b1,p = 12.985, b2,p = 29.072

4.23 (a) The Q–Q plots for y1 and y5 show little departure from normality. The Q–
Q plots for y2 and y3 show some evidence of heavier tails than the normal.
The Q–Q plots for y4 and y6 show some evidence of positive skewness.

(b) Variable y1 y2 y3 y4 y5 y6

√
b1 .5521 .0302 .7827 1.4627 .2219 .9974

b2 3.160 3.275 2.772 6.675 2.176 4.528

(c) Variable y1 y2 y3 y4 y5 y6

D .276 .274 .275 .260 .286 .271
Y −1.469 −1.845 −1.675 −5.249 .889 −2.741

(d) Variable y1 y2 y3 y4 y5 y6

z∗ −1.640 −.062 −2.803 −2.961 −.870 −2.456

4.24 (a) D2
i = 7.816, 3.640, 5.730, . . . , 6.433

(b) D2
(51) = 25.628. By extrapolation in Table A.6, the .05 critical value for

p = 6 is approximately 19. Thus we reject the hypothesis of multivariate
normality.

(c) (vi , u(i)) = (.021, .024), (.029, .028), . . . , (.306, .523). The plot shows
nonlinearity for the last 4 points.

(d) b1,p = 16.287, b2,p = 58.337. By extrapolation to p = 6 in Table A.5,
both appear to exceed their critical values.
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ANSWERS AND HINTS TO PROBLEMS 605

CHAPTER 5

5.1 By (5.6), we have

(y − �0)
′
(

S
n

)−1

(y − �0) = (y − �0)
′
(

1

n

)−1

S−1(y − �0)

= n(y − �0)
′S−1(y − �0).

5.2 From (5.9), we have

n1n2

n1 + n2
(y1 − y2)

′S−1
pl (y1 − y2) = (y1 − y2)

′
(

n1 + n2

n1n2

)−1

S−1
pl (y1 − y2)

= (y1 − y2)
′
(

n1 + n2

n1n2
Sp1

)−1

(y1 − y2)

= (y1 − y2)
′
[(

1

n1
+ 1

n2

)
Spl

]−1

(y1 − y2).

5.3 By (5.13) and (5.14),

t2(a) = [a′(y1 − y2)]2

[(n1 + n2)/n1n2]a′Spla
= n1n2

n1 + n2

[(y1 − y2)
′S−1

pl (y1 − y2)]2

(y1 − y2)
′S−1

pl SplS
−1
pl (y1 − y2)

.

5.4 It is assumed that y and x have a bivariate normal distribution. Let yi = ( yi
xi

)
.

Then di can be expressed as di = yi − xi = a′yi , where a′ = (1,−1). By
property 1a in Section 4.2, di is N (a′�, a′�a). Show that a′y = y − x , a′Sa =
s2

y − 2syx + s2
x = s2

d , and that T 2 = n(a′y)′(a′Sa)−1(a′y) is the square of

t = d/(sd/
√

n).

5.5 d = 1
n

∑n
i=1 di = 1

n

∑n
i=1(yi − xi ) = 1

n

∑
i yi − 1

n

∑
i xi = y − x,

s2
d = 1

n−1

∑n
i=1(di − d)2 = 1

n−1

∑
i (yi − xi − y + x)2

= 1
n−1

∑
i [(yi − y)− (xi − x)]2

When this is expanded, we obtain s2
d = s2

y + s2
x − 2syx .

5.6 The solution is similar to that for Problem 5.1.
5.7 By (5.7), [(ν − p + 1)/νp]T 2

p,ν = Fp,ν−p+1. By (5.29), (ν − q)(T 2
p+q −

T 2
p )/(ν+ T 2) is T 2

q,ν−p . Replacing p by q and ν by ν− p in (5.7), we see that
(ν−p)−q+1
(ν−p)q (ν − p)

T 2
p+q −T 2

p

ν+T 2
p

is Fq,(ν−p)−q+1.

5.9 Under H03, we have C�1 = 0 and C�2 = 0. Then

E(Cy) = CE(y) = CE

(
n1y1 + n2y2

n1 + n2

)
= n1C�1 + n2C�2

n1 + n2
= 0.
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606 ANSWERS AND HINTS TO PROBLEMS

Since y1 and y2 are independent,

cov(y) = cov

(
n1y1 + n2y2

n1 + n2

)
= n2

1�/n1 + n2
2�/n2

(n1 + n2)2

= (n1 + n2)�

(n1 + n2)2
.

5.10 CSplC′/(n1 + n2) is the sample covariance matrix of Cy. Hence the equa-
tion immediately above (5.39) exhibits the characteristic form of the T 2-
distribution.

5.11 T 2 = .061
5.12 (a) T 2 = 85.3327

(b) t1 = 2.5039, t2 = .2665, t3 = −2.5157, t4 = .9510, t5 = .3161
5.13 T 2 = 30.2860
5.14 (a) T 2 = 1.8198

(b) t1 = 1.1643, t2 = 1.1006, t3 = .9692, t4 = .7299. None of these is
significant. In fact, ordinarily they would not have been examined because
the T 2-test in part (a) did not reject H0.

5.15 T 2 = 79.5510

5.16 (a) T 2 = 133.4873
(b) t1 = 3.8879, t2 = −3.8652, t3 = −5.6911, t4 = −5.0426
(c) a′ = (.345,−.130,−.106,−.143)
(d) T 2 = 133.4873
(e) R2 = .782975, T 2 = 133.4873
(f) By (5.32), t2(y1|y2, y3, y4) = 35.9336, t2(y2|y1, y3, y4) = 5.7994,

t2(y3|y1, y2, y4) = 1.7749, t2(y4|y1, y2, y3) = 8.2592

(g) By (5.29), T 2(y3, y4|y1, y2) = 12.5206, F(y3, y4|y1, y2) = 6.0814
5.17 By (5.34), the test for parallelism gives T 2 = 132.6863. The discriminant

function coefficient vector is given by (5.35) as a′ = (−.362,−.223,−.137).
5.18 (a) T 2 = 66.6604

(b) t1 = −.6556, t2 = 2.6139, t3 = −3.2884, t4 = −4.6315, t5 = 1.8873,
t6 = −3.2205

(c) By (5.32),

t2(y1|y2, y3, y4, y5, y6) = .0758, t2(y2|y1, y3, y4, y5, y6) = 6.4513,

t2(y3|y1, y2, y4, y5, y6) = 6.9518, t2(y4|y1, y2, y3, y5, y6) = 6.0309,

t2(y5|y1, y2, y3, y4, y6) = 3.7052, t2(y6|y1, y2, y3, y4, y5) = 6.2619.

(d) By (5.29), T 2(y4, y5, y6|y1, y2, y3) = 27.547.
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ANSWERS AND HINTS TO PROBLEMS 607

5.19 (a) T 2 = 70.5679 (b) T 2(y5, y6|y3, y4) = 13.1517
(c) T 2(y1, y2|y3, y4, y5, y6) = 8.5162

5.20 (a) T 2 = 18.4625 (b) a′ = (−.057,−.010,−.242,−.071)
(c) By (5.32),

t2(y1|y2, y3, y4) = 3.3315, t2(y2|y1, y3, y4) = .0102,

t2(y3|y1, y2, y4) = 1.4823, t2(y4|y1, y2, y3) = .0013.

5.21 (a) T 2 = 15.1912 (b) a′ = (−.036, .048)
(c) t1 = −3.8371, t2 = −2.4362

5.22 T 2 = 22.3238
5.23 (a) T 2 = 206.1188

(b) t2(d1|d2, d3) = 59.0020, t2(d2|d1, d3) = 53.4507, t2(d3|d1, d2) =
80.9349

CHAPTER 6

6.1 (a) Using yi. = yi./n, we have

k∑
i=1

n∑
j=1

(yi j − yi.)
2 =

∑
i j

(y2
i j − 2yi j yi. + y2

i.)

=
∑

i j

y2
i j −

∑
i

yi.

∑
j

yi j + n
∑

i

y2
i.

=
∑

i j

y2
i j − 2

∑
i

yi.

n
yi. + n

∑
i

( yi.

n

)2

=
∑

i j

y2
i j − 2

∑
i

y2
i.

n
+
∑

i

y2
i.

n
.

6.2
|E−1||E|

|E−1||E + H| = |E−1E|
|E−1(E + H)| = |I|

|I + E−1H| = 1∏s
i=1(1 + λi )

;

see Section 2.11.2.
6.3 (E−1H − λI)a = 0

[(E1/2E1/2)−1H − λI]a = 0
[(E1/2)−1(E1/2)−1H − λI]a = 0
[(E1/2)−1H − λE1/2]a = 0
[(E1/2)−1H − λE1/2](E1/2)−1E1/2a = 0
[(E1/2)−1H(E1/2)−1 − λI]E1/2a = 0

6.4 We need to show that (2N + s + 1)/(2m + s + 1) = (νE − p + s)/d. Using
the definitions N = 1

2 (νE − p − 1), m = 1
2 (|νH − p| − 1), d = max(p, νH ),
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608 ANSWERS AND HINTS TO PROBLEMS

and s = min(p, νH ), we have 2N + s + 1 = 2( 1
2 )(νE − p − 1) + s +

1 = νE − p − 1 + s + 1 = νE − p + s. For the denominator, we have
2m + s + 1 = 2( 1

2 )(|νH − p| − 1)+ s + 1 = |νH − p| + s. Suppose νH > p.
Then |νH − p| + s = νH − p + p = νH = d. On the other hand, if νH < p,
then |νH − p| + s = p − νH + νH = p = d.

6.5 If p ≤ νH , we have s = p and |νH − p| = νH − p. Then (6.30) becomes

2(s N + 1)U (s)

s2(2m + s + 1)
=

2
[

p
(

1
2

)
(νE − p − 1)+ 1

]
U (s)

p2
[
2
(

1
2

)
(νH − p − 1)+ p + 1

]

= [p(νE − p − 1)+ 2]U (s)

p2(νH − p − 1 + p + 1)

= [p(νE − p − 1)+ 2]U (s)

p2νH
,

which is the same as (6.31) because p = s.
6.6 When s = 1, we have V (1) = λ1/(1 + λ1), U (1) = λ1, � = 1/(1 + λ1), and

θ = λ1/(1 + λ1). Solving the last of these for λ1 gives λ1 = θ/(1 − θ), and
the results in (6.34), (6.35), and (6.36) follow immediately.

6.7 With T 2 = (n1 + n2 − 2)U (1) and U (1) = θ/(1 − θ), we obtain (5.19). We
obtain (5.18) from (5.19) by V (1) = θ . A similar argument leads to (5.16).

6.8 (a) With yi. = yi./ni and y.. = y../N , we obtain

H =
k∑

i=1

ni (yi. − y..)(yi. − y..)
′

=
∑

i

ni (yi.y
′
i. − yi.y

′
.. − y..y

′
i. + y..y

′
..)

=
∑

i

ni yi.y
′
i. −

(∑
i

ni yi.

)
y′
.. − y..

∑
i

ni y′
i. + y..y

′
..

∑
i

ni

=
∑

i

ni
yi.y′

i.

n2
i

−
(∑

i yi.
)

y′
..

N
− y..

N

∑
i

y′
i. +

Ny..y′
..

N 2

=
∑

i

yi.y′
i.

ni
− y..y′

..

N
− y..y′

..

N
+ y..y′

..

N
.

6.9 y1. − y.. becomes

y1. −
n1y1. + n2y2.

n1 + n2
= n1y1. + n2y1. − n1y1. − n2y2.

n1 + n2
= n2(y1. − y2.)

n1 + n2
.
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ANSWERS AND HINTS TO PROBLEMS 609

The first term in the sum is

n1n2
2

(n1 + n2)2
(y1. − y2.)(y1. − y2.)

′.

The second term in the sum is

n2
1n2

(n1 + n2)2
(y1. − y2.)(y1. − y2.)

′.

6.10 θ = λ1

1 + λ1
= SSH(z)/SSE(z)

1 + SSH(z)/SSE(z)
= SSH(z)

SSE(z)+ SSH(z)
6.11 From r2

i = λi/(1+λi), obtain λi = r2
i /(1−r2

i ). Substitute this into 1/(1+λi)

to obtain the result.
6.12 Substitute AP = V (s)/s into (6.50) to obtain (6.26).
6.13 When s = 1, (6.51) becomes

ALH = U (1)

1 + U (1)
.

By (6.34), U (1) = λ1.
6.14 Substitute ALH = U (s)/(s + U (s)) from (6.51) into (6.52) to obtain F3 in

(6.31).
6.15 To show cov(ci yi.) = c2

i �/n, use (3.74), cov(Ay) = A�A′, with A = ci I.
6.16 By (6.9),

Hz = n
k∑

i=1

(zi. − z..)(zi. − z..)′

= n
∑

i

(Cyi. − Cy..)(Cyi. − Cy..)′

= n
∑

i

[C(yi. − y..)][C(yi. − y..)]′

= nC

[∑
i

(yi. − y..)(yi. − y..)′
]

C′ [by (2.45)]

6.17 C is not square.

6.18 E(Cy..) = CE(y..) = CE(
∑k

i=1 yi./k)

= C
∑

i E(yi.)/k = C
∑

i �i/k

= 0 [by H03 in (6.83)]

cov(Cy..) = C�C′/kn if there are no differences in the group means, C�1,
C�2, . . . ,C�k . This condition is assured by H01 in (6.78).
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610 ANSWERS AND HINTS TO PROBLEMS

6.19 For our purposes, it will suffice to show that T 2 has the characteristic form of
the T 2-distribution in (5.6).

6.20 If � = σ 2I, (6.89) becomes

ε = [tr(σ 2I − Jσ 2I/p)]2

(p − 1) tr(σ 2I − Jσ 2I/p)2
= [σ 2 tr(I − J/p)]2

σ 4(p − 1) tr(I − J/p)2
.

Show that (I − J/p)2 = I − J/p. Then

ε = σ 4(p − p/p)2

σ 4(p − 1)(p − p/p)
= (p − 1)2

(p − 1)2
= 1.

6.21 The (univariate) expected mean square corresponding to µ. in a one-way
ANOVA is σ 2 + Nµ2. Thus the mean square for µ. is tested with MSE. The
corresponding multivariate test therefore uses H∗ and E.

6.22 From (6.105) we have

� = |AEA′|
|A(E + H∗)A′| = |AEA′|

|AEA′ + AH∗A′| .

Substitute H∗ = kny..y′.. to obtain

� = |AEA′|
|AEA′ + √

knAy..(
√

knAy..)′| .

Now use (2.95) with B = AEA′ and c = √
knAy.. to obtain

� = 1

1 + kn(Ay..)′(AEA′)−1(Ay..)
.

Multiply and divide by νE and use (6.101) to obtain (6.106).
6.23 Solve for T 2 in (6.106).
6.24 In C1B′ the rows of C1 are multiplied by the rows of B. Show that C1B′ = O.
6.25 As noted, the function (y−A�̂)′S−1(y−A�̂) is similar to SSE = (y−X�̂)′(y−

X�̂) in (10.4) and (10.6). By an argument similar to that used in Section 10.2.2
to obtain �̂ = (X′X)−1X′y, it follows that �̂ = (A′S−1A)−1A′S−1y. An alter-
native approach (for those familiar with differentiation with respect to a vector)
is to expand (y − A�̂)′S−1(y − A�̂) to four terms, differentiate with respect
to �̂, and set the result equal to 0.

6.26 Expand n(y − A�̂)′S−1(y − A�̂) to four terms and substitute

�̂ = (A′S−1A)−1A′S−1y

into the last one.
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ANSWERS AND HINTS TO PROBLEMS 611

6.27 (a) E =




13.41 7.72 8.68 5.86
7.72 8.48 7.53 6.21
8.68 7.53 11.61 7.04
5.86 6.21 7.04 10.57


,

H =




1.05 2.17 −1.38 −.76
2.17 4.88 −2.37 −1.26

−1.38 −2.37 2.38 1.38
−.76 −1.26 1.38 .81


,

� = .224, V (s) = .860,U (s) = 3.08, and θ = .747. All four are signifi-
cant.

(b) η2
� = 1−� = .776, η2

θ = θ = .747, A� = 1−�1/s = .526, ALH = .606,
AP = V (s)/s = .430

(c) The eigenvalues of E−1H are 2.9515 and .1273. The essential dimension-
ality of the space of the mean vectors is 1.

(d) For 1, 2 vs. 3 we have � = .270, V (s) = .730,U (s) = 2.702, and θ =
.730. All four are significant. For 1 vs. 2 we obtain � = .726, V (s) =
.274,U (s) = .377, and θ = .274. All four are significant.

(e) Variable y1 y2 y3 y4

F 1.29 9.50 3.39 1.27

The F’s for y2 and y3 are significant. For the discriminant func-
tion z = a′y, where a is the first eigenvector of E−1H, we have a′ =
(−.032,−.820, .533, .208). Again y2 and y3 contribute most to separa-
tion of groups.

(f) By (6.127),�(y3, y4|y1, y2) = �(y1, y2, y3, y4)/�(y1, y2) = .224/.568 =
.395 < �.05 = .725.

(g) By (6.128),

�(y1|y2, y3, y4) = �(y1, y2, y3, y4)/�(y2, y3, y4)

= .224/.240 = .934 > �.05 = .819,

�(y2|y1, y3, y4) = .224/.538 = .417 < .819,

�(y3|y1, y2, y4) = .224/.369 = .609 < .819,

�(y4|y1, y2, y3) = .224/.243 = .924 > .819.

6.28 (a) S effect: � = .00065, V (s) = 2.357,U (s) = 142.304, θ = .993. All are
significant.
V effect: � = .065, V (s) = 1.107,U (s) = 11.675, θ = .920. All are
significant.
SV interaction:� = .138, V (s) = 1.321,U (s) = 3.450, θ = .726. All are
significant.
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612 ANSWERS AND HINTS TO PROBLEMS

(b) Contrast on V comparing 2 vs. 1, 3: � = .0804, V (s) = .920,U (s) =
11.445, θ = .920. All are significant.

(c) Linear contrast for S: � = .0073, V (S) = .993, U (s) = 135.273, θ =
.993. All are significant.
Quadratic contrast for S:� = .168, V (s) = .832, U (s) = 4.956, θ = .832.
All are significant.
Cubic contrast for S: � = .325, V (s) = .675, U (s) = 2.076, θ = .675.
All are significant.

(d) The ANOVA F’s for each variable are as follows:

Source y1 y2 y3 y4

S 980.21 214.24 876.13 73.91
V 251.22 9.47 14.77 27.12

SV 20.37 2.84 3.44 2.08

All F’s are significant except the last one, 2.08.
(e) Test of significance of y3 and y4 adjusted for y1 and y2:

S V SV

�(y3, y4|y1, y2) .1226 .9336 .6402

(f) Test of significance of each variable adjusted for the other three:

S V SV

�(y1|y2, y3, y4) .1158 .2099 .3082
�(y2|y1, y3, y4) .5586 .8134 .7967
�(y3|y1, y2, y4) .2271 .9627 .7604
�(y4|y1, y2, y3) .6692 .9795 .8683

6.29 V = velocity (fixed), L = lubricant (random).

V effect (using HV L for error matrix): � = .0492, V (s) = .951, U (s) =
19.315, θ = .951. With p = 2, νH = 1, and νE = 3, �.05 = .050, V (s)

.05 =
.950, U (s)

.05 = T 2
.05/νE = 19.00, θ.05 = .950. Thus all four test statistics are

significant.
L effect (using E for error matrix): � = .692, V (s) = .314, U (s) = .438,
θ = .295. None is significant.
V L interaction (using E for error matrix): � = .932, V (s) = .069, U (s) =
.073, θ = .061. None is significant.

6.30 Source � V (s) U (s) θ Significant?

(a) Reagent .0993 1.126 6.911 .868 Yes
(b) Contrast 1 vs. 2, 3, 4 .146 .854 5.871 .854 Yes

Subjects .00000082 2.847 1091.127 .999 Yes
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ANSWERS AND HINTS TO PROBLEMS 613

6.31 P = proportion of filler, T = surface treatment, F = filler:

Source � V (s) U (s) θ Significant?

P .138 .977 5.441 .841 Yes
T .080 .920 11.503 .920 Yes
PT .712 .295 .396 .271 No
F .019 .980 51.180 .981 Yes
P F .179 .958 3.835 .784 Yes
T F .355 .645 1.815 .645 Yes
PT F .752 .264 .309 .172 No

6.32 A = period; P , T , and F are defined in Problem 6.31:

Source � V (s) U (s) θ Significant?

A .021 .979 47.099 .979 Yes
AP .475 .545 1.063 .505 No
AT .142 .858 6.049 .858 Yes
APT .777 .228 .282 .208 No
AF .095 .905 9.486 .905 Yes
APF .622 .387 .594 .363 No
ATF .387 .613 1.586 .613 Yes
APTF .781 .229 .267 .169 No

For the between-subject factors and interactions, we have

Source df F p-Value

P 2 21.79 < .0001
T 1 78.34 < .0001
PT 2 1.28 .3143
F 1 345.04 < .0001
PF 2 15.79 .0004
TF 1 5.36 .0392
PTF 2 .48 .6294
Error 12

6.33 For parallelism, we use (6.79) to obtain � = .2397. For levels, we use (6.81)
and (6.82) to obtain � = .9651 and F = .597. For flatness we use (6.84) to
obtain T 2 = 110.521.

6.34 (a) By (6.90), T 2 = 20.7420. By (6.105) or (6.106), � = .5655.

(b) For each row c′
i of C, we use T 2

i = n(c′
i y)

′(c′
i Sci )

−1c′
i y, as in Exam-

ple 6.9.2: T 2
1 = 17.0648, T 2

2 = .3238, T 2
3 = .2714. This can also be done

by Wilks’ � using �i = c′
i Eci/c′

i (E + H∗)ci : �1 = .6127, �2 = .9882,
�3 = .9900.

6.35 The six variables represent two within-subjects factors: y1 is A1 B1, y2 is A1 B2,
y3 is A1 B3, x1 is A2 B1, x2 is A2 B2, and x3 is A2 B2. Using linear and quadratic
effects (other orthogonal contrasts could be used), the matrices A,B, and G in
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614 ANSWERS AND HINTS TO PROBLEMS

(6.98), (6.99), and (6.100) become

A = ( 1 1 1 −1 −1 −1 ),

B =
(

1 0 −1 1 0 −1
1 −2 1 1 −2 1

)
,

G =
(

1 0 −1 −1 0 1
1 −2 1 −1 2 −1

)
.

Using these in T 2 as given by (6.101), (6.102), and (6.103), we obtain T 2
A =

193.0901, T 2
B = 2.8000, and T 2

AB = 6.8676. Using MANOVA tests for the
same within-subjects factors, we obtain

Source � V (s) U (s) θ Significant?

A .202 .798 3.941 .798 Yes
B .946 .054 .057 .054 No
AB .877 .123 .140 .123 Yes

6.36 MANOVA tests for the within-subjects effect T (time), and interactions of time
with the between-subjects effects C (cancer) and G (gender):

Source � V (s) U (s) θ

T .258 .742 2.874 .742
T C .363 .809 1.299 .444
T G .929 .071 .077 .071
T CG .809 .201 .225 .130

ANOVA F-tests for between-subjects factors and interactions:

Source df F p-Value

C 5 4.16 .003
G 1 2.69 .107
CG 5 .37 .869

6.37 (a) T 2 = 79.551

(b) Using ti = c′
i y/
√

c′
i Sci/n, where c′

i is the i th row of C, we obtain t1 =
7.155, t2 = −.445, t3 = −.105.

6.38 (a) T 2 = 1712.2201

(b) Using ti = c′
i y/
√

c′
i Sci/n, we obtain t1 = 332.358, t2 = 54.589, t3 =

.056, t4 = 7.637, t5 = 4.344, t6 = 1.968.
6.39 (a) Using T 2 = N (Cy..)

′(CSplC′)−1(Cy..) in (6.122), we obtain T 2 =
17.582 < T 2

.05,3,9 = 27.202.

(b) t1 = .951, t2 = 1.606, t3 = .127 [Since the T 2-test in part (a) did not
reject H0, these would ordinarily not be calculated.]
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ANSWERS AND HINTS TO PROBLEMS 615

(c) Using � = |CEC′|/|C(E + H)C′| in (6.124), we obtain � = .3107 >
�.05,3,2,9 = .203.

(d) To compare groups using each row of C, we use �i = c′
i Eci/ci (E + H)ci

to obtain �1 = .833, �2 = .988, �3 = .650. [Since the �-test in part (c)
did not reject H0, we would ordinarily not have calculated these.]

6.40 (a) Using T 2 = N (Cy..)
′(CSplC′)−1(Cy..) in (6.122), we obtain T 2 =

33.802 > T 2
.05,4,24 = 12.983.

(b) Using t2
i = N (c′

i y)
2/c′

i Splci , we obtain t2
1 = .675, t2

2 = .393, t2
3 =

32.626. Only the cubic effect is significant.
(c) For an overall test comparing groups, we use (6.124),

� = |CEC′|/|C(E + H)C′| = .4361.

(d) To compare groups using each row of C, we use

�i = c′
i Eci/c′

i (E + H)ci : �1 = .534,�2 = .764,�3 = .941.

6.41 (a) Using T 2 = N (Cy..)
′(CSplC′)−1(Cy..) in (6.122), we obtain T 2 =

45.500.
(b) Using t2

i = N (c′
i y)

2/c′
i Splci , we obtain t2

1 = 18.410, t2
2 = 8.385, t2

3 =
3.446, t2

4 = .011, t2
5 = .098, t2

6 = 2.900.
(c) For an overall test comparing groups, we use (6.124),

� = |CEC′|/|C(E + H)C′| = .304.

(d) To compare groups using each row of C, we use

�i = c′
i Eci/c′

i (E + H)ci : �1 = .695,�2 = .925,�3 = .731,

�4 = .814,�5 = .950,�6 = .894.

6.42 (a) Combined groups (pooled covariance matrix). Using t = number of min-
utes −30, we obtain, by (6.115),

�̂′ = (98.1, .981, .0418,−.00101,−.000048).

By (6.116), we obtain T 2 = .216. By (6.118), we have

�̂′ = (95.5, 96.7, 95.6, 93.8, 98.1, 99.2).

(b) Group 1: �̂′
1 = (100.7, .819, .040,−.00085,−.000038), T 2 = .0113,

�̂′
1 = (105.2, 104.4, 101.5, 98.6, 100.6, 108.1)

(c) Groups 2–4: �̂′
2 = (97.4, 1.010, .0403,−.00103,−.000049), T 2 =

.2554, �̂′
2 = (92.6, 94.4, 93.8, 92.4, 97.4, 96.6)
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616 ANSWERS AND HINTS TO PROBLEMS

6.43 (a) For the control group, the overall test is

T 2 = n1(Cy1.)
′(CS1C′)−1(Cy1.) = 554.749.

For each row of C (linear, quadratic, etc.), we have

t2
i = n1(c′

i y1.)
2/c′

i S1ci : t2
1 = 5.714,

t2
2 = 50.111, t2

3 = 50.767, t2
4 = 8.011, t2

5 = .508.

(b) For the obese group, we obtain T 2 = n2(Cy2.)
′(CS2C′)−1(Cy2.) =

128.552. For the five rows of C, we obtain t2
1 = 4.978, t2

2 = 107.129,
t2
3 = 5.225, t2

4 = 10.750, t2
5 = 3.572.

(c) For the combined groups (Spl = pooled covariance matrix), we use
T 2 = N (Cy..)

′(CSplC′)−1(Cy..) in (6.122) to obtain T 2 = 247.0079.
We test for linear, quadratic, etc., trends using the rows of C in t2

i =
N (c′

i y..)
2/c′

i Splci : t2
1 = 1.162, t2

2 = 155.017, t2
3 = 30.540, t2

4 = 1.319,
t2
5 = .506. To compare groups, we use � = |CEC′|/|C(E + H)C′|

in (6.124) and �i = c′
i Eci/c′

i (E + H)ci : � = .4902, �1 = .7947,
�2 = .9940, �3 = .7987, �4 = .6228, �5 = .9172.

6.44 Control group: By (6.115),

�̂′
1 = (3.129, .656,−.283,−.334, .192, .037,−.020).

By (6.116), T 2 = .7633. By (6.118),

�̂′
1 = (µ̂11, µ̂12, . . . , µ̂18) = (4.11, 3.29, 2.71, 2.71, 3.04, 3.39, 3.54, 3.95).

Obese group: �̂′
2 = (3.207,−.187, .463, .056,−.102,−.010, .010), T 2 =

.3943, �̂′
2 = (4.51, 4.12, 3.81, 3.48, 3.24, 3.37, 3.70, 4.02)

Combined groups (pooled covariance matrix): �̂′ = (3.15, .162, .183,−.115,
.012, .010,−.002), T 2 = .0158, �̂′ = (4.36, 3.80, 3.36, 3.15, 3.13, 3.37, 3.63,
3.98)

6.45 A = activator, T = time, C = group. In (6.101), (6.102), and (6.103), we use

A =
(

2 2 2 −1 −1 −1 −1 −1 −1
0 0 0 1 1 1 −1 −1 −1

)
,

T =
( −1 0 1 −1 0 1 −1 0 1

1 −2 1 1 −2 1 1 −2 1

)
,

G =




−2 0 2 1 0 −1 1 0 −1
2 −4 2 −1 2 −1 −1 2 −1
0 0 0 1 0 −1 −1 0 1
0 0 0 1 −2 1 −1 2 −1


 .
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ANSWERS AND HINTS TO PROBLEMS 617

T 2
A = 5072.579, T 2

T = 268.185, T 2
AT = 143.491. The same within-sample

factors and interaction can be tested with Wilks’� using (6.105) and the other
three MANOVA tests:
Source � V (s) U (s) θ Significant?

A .003 .997 317.04 .997 Yes
T .056 .944 16.76 .944 Yes
AT .100 .900 8.97 .900 Yes

The interactions of the within factors with the between factor G are tested
with Wilks’ � (Section 6.9.5) and with the other three MANOVA tests:

Source � V (s) U (s) θ Significant?

AC .884 .116 .131 .116 No
T C .889 .111 .125 .111 No
AT C .795 .205 .258 .205 No

The between-subjects factor C is tested with an ANOVA F-test: F = .47,
p-value = .504.

CHAPTER 7

7.1 If �0 is substituted for S in (7.1), we have

u = ν[ln |�0| − ln |�0| + tr(I)− p] = ν[0 + p − p] = 0.

7.2 ln |�0| − ln |S| = − ln |�0|−1 − ln |S|
= − ln |�−1

0 | − ln |S| [by (2.91)]

= −(ln |S| + ln |�−1
0 |)

= − ln |S�−1
0 | [by (2.89)]

7.3 − ln
(∏p

i=1 λi
)+∑p

i=1 λi = −∑p
i=1 lnλi +∑p

i=1 λi =∑p
i=1(λi − lnλi )

7.4 As noted in Section 7.1, the likelihood ratio in this case involves the ratio of
the determinants of the sample covariance matrices under H0 and H1. Under
H1, which is essentially unrestricted, the maximum likelihood estimate of �
(corrected for bias) is given by (4.12) as S. Under H0 it is assumed that each
of the p yi ’s in y has variance σ 2 and that all yi ’s are independent. Thus we
estimate σ 2 (unbiasedly) in each of the p columns of the Y matrix [see (3.17)
and (3.23)] and pool the p estimates to obtain

σ̂ 2 =
n∑

i=1

p∑
j=1

(yi j − y j )
2

(n − 1)p
.
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618 ANSWERS AND HINTS TO PROBLEMS

Show that by (3.22) and (3.23) this is equal to

σ̂ 2 =
p∑

j=1

s j j

p
= tr(S)

p
.

Thus the likelihood ratio is

LR =
( |S|

|σ̂ 2I|
)n/2

=
( |S|

|I tr(S)/p|
)n/2

.

Show that by (2.85) this becomes

LR =
( |S|
(tr S/p)p

)n/2

.

7.5 If λ1 = λ2 = · · · = λp = λ, say, then by (7.5),

u = p p∏p
i=1 λi(∑p

i=1 λi
)p = p pλp

(pλ)p
= 1.

7.6 [(1 − ρ)I + ρJ] =




1 − ρ 0 . . . 0
0 1 − ρ . . . 0
...

...
...

0 0 . . . 1 − ρ


+



ρ ρ . . . ρ

ρ ρ . . . ρ
...

...
...

ρ ρ . . . ρ




=




1 ρ . . . ρ

ρ 1 . . . ρ
...

...
...

ρ ρ . . . 1




7.7 (a) Substitute J = jj′ and x = j into Jx = λx to obtain jj′j = λj, which gives
pj = λj.

(b) S0 = s2[(1 − r)I + rJ] = s2(1 − r)

(
I + r

1 − r
J
)

(c) By (2.85) and (2.108), we have

|S0| =
∣∣∣∣s2(1 − r)

(
I + r

1 − r
J
)∣∣∣∣ = (s2)p(1 − r)p

∣∣∣∣I + r

1 − r
J

∣∣∣∣
= (s2)p(1 − r)p

p∏
i=1

(1 + λi ) = (s2)p(1 − r)p
(

1 + rp

1 − r

)

= (s2)p(1 − r)p−1(1 − r + rp) = (s2)p(1 − r)p−1[1 + (p − 1)r].
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ANSWERS AND HINTS TO PROBLEMS 619

7.8 M = |S1|ν1/2|S2|ν2/2 · · · |Sk |νk/2

|S|∑i νi/2
= |S1|ν1/2|S2|ν2/2 · · · |Sk |νk/2

|S|ν1/2|S|ν2/2 · · · |S|νk/2

7.9 (a) M = .7015 (b) M = .0797

7.10 � = |S|
|Syy||Sxx | = |Sxx ||Syy − SyxS−1

xx Sxy|
|Syy||Sxx |

= |S−1
yy ||Syy − SyxS−1

xx Sxy| [by (2.91)]

= |S−1
yy (Syy − SyxS−1

xx Sxy)| [by (2.89)]

= |I − S−1
yy SyxS−1

xx Sxy|
=∏s

i=1(1 − r2
i ) [by (2.108)],

where the r2
i ’s are the nonzero eigenvalues of S−1

yy SyxS−1
xx Sxy . It was shown in

Section 2.11.2 that 1 − λi is an eigenvalue of I − A, where λi is an eigenvalue
of A.

7.11 When all pi = 1, we have k = p, and the submatrices in the denominators of
(7.33) and (7.34) reduce to S j j = s j j , j = 1, 2, . . . , p, and R j j = 1, j = 1,
2, . . . , p.

7.12 When all pi = 1, we have k = p and

a2 = p2 −
p∑

i=1

p2
i = p2 − p, a3 = p3 − p,

c = 1 − 1

12 f ν
(2a3 + 3a2)

= 1 − 1

6(p2 − p)ν
[2(p3 − p)+ 3(p2 − p)]

= 1 − 1

6(p − 1)ν
[2(p2 − 1)+ 3(p − 1)]

= 1 − 1

6(p − 1)ν
[2(p − 1)(p + 1)+ 3(p − 1)]

= 1 − 1

6ν
[2p + 5].

7.13 As noted below (7.6), the degrees of freedom for the χ2-approximation is the
total number of parameters minus the number estimated under H0. The number
of distinct parameters in � is p + (p

2

) = 1
2 p(p +1). The number of parameters

estimated under H0 is p. The difference is 1
2 p(p + 1)− p = 1

2 p(p − 1).
7.14 By (7.1) and (7.2), u = 11.094 and u′ = 10.668.
7.15 By (7.7), u = .0000594. By (7.9), u′ = 23.519. For H0 : C�C′ = σ 2I, u =

.471 and u′ = 2.050.
7.16 For H0 : � = σ 2I, u = .00513 and u′ = 131.922. For H0 : C�C′ = σ 2I,

u = .129 and u′ = 36.278.
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620 ANSWERS AND HINTS TO PROBLEMS

7.17 For H0 : � = σ 2I, u = .00471 and u′ = 136.190. For H0 : C�C′ = σ 2I,
u = .747 and u′ = 7.486.

7.18 By (7.16), u′ = 6.3323 with 13 degrees of freedom. The F-approximation is
F = .4802 with 13 and 1147 degrees of freedom.

7.19 u′ = 21.488, F = 2.511 with 8 and 217 degrees of freedom
7.20 u′ = 35.795, F = 4.466 with 8 and 4905 degrees of freedom
7.21 u = 8.7457, F = .8730 with 10 and 6502 degrees of freedom
7.22 |S1| = 2.620 × 1014, |S2| = 2.410 × 1014, |Spl| = 4.368 × 1014, u = 17.502,

F = .829
7.23 ln M = −85.965, u = 156.434, a1 = 21, a2 = 17,797, F = 7.4396
7.24 ln M = −7.082, u = 10.565, a1 = 10, a2 = 1340, F = 1.046
7.25 ln M = −8.6062, u = 14.222, a1 = 20, a2 = 3909, F = .707
7.26 ln M = −28.917, u = 44.018, a1 = 50, a2 = 3238, F = .8625
7.27 ln M = −142.435, u = 174.285, a1 = 110, a2 = 2084, F = 1.448
7.28 |S| = 1,207, 109.5, |Syy| = 2385.1, |Sxx | = 1341.9, � = .3772
7.29 |S| = 4.237 × 1013, |Syy| = 484, 926.6, |Sxx | = 131, 406, 938, � = .6650
7.30 |S| = 9.676 × 10−8, |Syy| = .02097, |Sxx | = 9.94 × 10−6, � = .4642
7.31 |S| = 1.7148 × 1016, |S11| = 11, 284.967, |S22| = 11,891.15, |S33| =

25,951.605, s44 = 22,227.158, s55 = 214.06, u = .00103, u′ = 274.787,
ν = 46

7.32 |S| = 459.96, s11 = 140.54, s22 = 72.25, s33 = .250, u = .1811, u′ =
12.246, f = 3

7.33 u = .0001379, u′ = 16.297
7.34 u = .0005176, u′ = 127.367
7.35 u = .005071, u′ = 131.226

CHAPTER 8

8.1 Using a = S−1
pl (y1 − y2), we obtain

[a′(y1 − y2)]2

a′Spla
= [(y1 − y2)

′S−1
pl (y1 − y2)]2

(y1 − y2)
′S−1

pl SplS−1
pl (y1 − y2)

= [(y1 − y2)
′S−1

pl (y1 − y2)]2

(y1 − y2)
′S−1

pl (y1 − y2)
.

8.2 You may wish to use the following steps:
(i) In Section 5.6.2 the grouping variable w is defined as n2/(n1 + n2) for

each observation in group 1 and −n1/(n1 + n2) for group 2. Show that
with this formulation, w = 0.

 10.1002/0471271357.app2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/0471271357.app2 by Iraq H

inari N
PL

, W
iley O

nline L
ibrary on [22/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ANSWERS AND HINTS TO PROBLEMS 621

(ii) Because w = 0, there is no intercept, and the fitted model becomes

ŵi = b1(yi1 − y1)+ b2(yi2 − y2)+ · · · + bp(yip − y p),

i = 1, 2, . . . , n1 + n2.

Denote the resulting matrix of y values corrected for their means as
Yc and the vector of w’s as w. Then the least squares estimate b =
(b1, b2, . . . , bp)

′ is obtained as

b = (Y′
cYc)

−1Y′
cw.

Using (2.51), show that

Y′
cYc =

2∑
i=1

ni∑
j=1

(yi j − y)(yi j − y)′

=
2∑

i=1

ni∑
j=1

(yi j − yi )(yi j − yi )
′ + n1n2

n1 + n2
(y1 − y2)(y1 − y2)

′,

where y = (n1y1 + n2y2)/(n1 + n2). It will be helpful to write the first
sum above as

n1∑
j=1

(y1 j − y)(y1 j − y)′ +
n2∑
j=1

(y2 j − y)(y2 j − y)′

and add and subtract y1 in the first term and y2 in the second.
(iii) Show that

Y′
cw =

2∑
i=1

ni∑
j=1

(yi j − y)wi j = n1n2

n2 + n2
(y1 − y2).

Again it will be helpful to sum separately over the two groups.
(iv) From steps (ii) and (iii) we have

b = (νS + kd d
′
)−1kd,

where S = ∑
i j (yi j − yi )(yi j − yi )

′/(n1 + n2 − 2), ν = n1 + n2 − 2,

k = n1n2/(n1 + n2), and d = y1 − y2. Use (2.77) for the inverse of a
patterned matrix of the type νS + kd d

′
to obtain (8.4).
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622 ANSWERS AND HINTS TO PROBLEMS

8.3 You may want to use the following steps:

(i) R2 is defined as [see (10.30)]

R2 = b′Y′
cw − nw2

w′w − nw2
.

In this case the expression simplifies because w = 0. Using Y′
cw in Prob-

lem 8.2(iii), show that R2 = b′(y1 − y2).
(ii) Show that

b′(y1 − y2) = T 2

n1 + n2 − 2 + T 2
.

8.4 [a′(y1 − y2)]2 = a′(y − y2)a
′(y1 − y2) = a′(y1 − y2)(y1 − y2)

′a
8.5 Ha − λEa = 0

E−1(Ha − λEa) = E−10
E−1Ha − λE−1Ea = 0
(E−1H − λI)a = 0

8.6 Substituting a∗
r = sr ar , r = 1, 2, . . . , p, into (8.15), we obtain

z1i = s1a1
y1i1 − y11

s1
+ s2a2

y1i2 − y12

s2
+ · · · + spap

y1i p − y1p

sp

= a1 y1i1 + a2 y1i2 + · · · + ap y1i p − a1 y11 − a2 y12 − · · · − ap y1p

= a1 y1i1 + a2 y1i2 + · · · + ap y1i p − a′y1

8.7 (a) a∗′ = (1.366,−.810, 2.525,−1.463)
(b) t1 = 5.417, t2 = 2.007, t3 = 7.775, t4 = .688
(c) The standardized coefficients rank the variables in the order y3, y4, y1, y2.

The t-tests rank them in the order y3, y1, y2, y4.
(d) The partial F’s calculated by (8.26) are F(y1|y2, y3, y4) = 7.844,

F(y2|y1, y3, y4) = 2.612, F(y3|y1, y2, y4) = 40.513, and
F(y4|y1, y2, y3) = 9.938.

8.8 (a) a′ = (.345,−.130,−.106,−.143)
(b) a∗′ = (4.137,−2.501,−1.158,−2.068)
(c) t1 = 3.888, t2 = −3.865, t3 = −5.691, t4 = −5.043
(e) F(y1|y2, y3, y4) = 35.934, F(y2|y1, y3, y4) = 5.799,

F(y3|y1, y2, y4) = 1.775, F(y4|y1, y2, y3) = 8.259

8.9 (a) a′ = (−.145, .052,−.005,−.089,−.007,−.022)
(b) a∗′ = (−1.016, .147,−.542,−1.035,−.107,−1.200)
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ANSWERS AND HINTS TO PROBLEMS 623

(c) t1 = −4.655, t2 = .592, t3 = −4.354, t4 = −5.257, t5 = −4.032,
t6 = −6.439

(e) F(y1|y2, y3, y4, y5, y6) = 8.081, F(y2|y1, y3, y4, y5, y6) = .150,
F(y3|y1, y2, y4, y5, y6) = .835, F(y4|y1, y2, y3, y5, y6) = 8.503,
F(y5|y1, y2, y3, y4, y6) = .028, F(y6|y1, y2, y3, y4, y5) = 9.192

8.10 (a) a′ = (.057, .010, .242, .071)
(b) a∗′ = (1.390, .083, 1.025, .032)
(c) t1 = −3.713, t2 = .549, t3 = −3.262, t4 = −.724
(e) F(y1|y2, y3, y4) = 3.332, F(y2|y1, y3, y4) = .010,

F(y3|y1, y2, y4) = 1.482, F(y4|y1, y2, y3) = .001

8.11 (a) a′
1 = (.021, .533,−.347,−.135), a′

2 = (−.317, .298, .243,−.026)
(b) λ1/(λ1 + λ2) = .958, λ2/(λ1 + λ2) = .042. Using the methods of Sec-

tion 8.6.2, we have two tests, the first for significance of λ1 and λ2 and the
second for significance of λ2:

Test � F p-Value for F

1 .2245 8.3294 <.0001
2 .8871 1.3157 .2869

(c) a∗′
1 = (.076, 1.553,−1.182,−.439), a∗′

2 = (−1.162, .869, .828,−.085)
(d) F(y1|y2, y3, y4) = 1.067, F(y2|y1, y3, y4) = 20.975,

F(y3|y1, y2, y4) = 9.630, F(y4|y1, y2, y3) = 1.228
(e) In the plot, the first discriminant function separates groups 1 and 2 from

group 3, but the second is ineffective in separating group 1 from group 2.
8.12 (a) λi λi/

∑4
j=1 λ j Eigenvector

1.8757 .6421 a′
1 = (.470,−.263, .653,−.074)

.7907 .2707 a′
2 = (.176, .188,−1.058, 1.778)

.2290 .0784 a′
3 = (−.155, .258, .470,−.850)

.0260 .0089 a′
4 = (−3.614, .475, .310,−.479)

(b) Test of significance of each eigenvalue and those that follow it:

Test � Approximate F p-Value for F

1 .1540 4.937 <.0001
2 .4429 3.188 .0006
3 .7931 1.680 .1363
4 .9747 .545 .5839

(c) a∗′
1 = (.266,−.915, 1.353,−.097), a∗′

2 = (.100, .654,−2.291, 2.333)
a∗′

3 = (−.087, .899, .973,−1.115), a∗′
4 = (−2.044, 1.654, .643,−.628)

(d) F(y1|y2, y3, y4) = .299, F(y2|y1, y3, y4) = 1.931,
F(y3|y1, y2, y4) = 6.085, F(y4|y1, y2, y3) = 4.659
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624 ANSWERS AND HINTS TO PROBLEMS

(e) In the plot, the first discriminant function separates groups 1, 4, and 6
from groups 2, 3, and 5. The second function achieves some separation of
group 6 from groups 1 and 4 and some separation of group 3 from groups
2 and 5.

8.13 Three variables entered the model in the stepwise selection. The summary table
is as follows:

Variable
Step Entered Overall � p-Value Partial � Partial F p-Value

1 y4 .4086 <.0001 .4086 12.158 <.0001
2 y3 .2655 <.0001 .6499 4.418 .0026
3 y2 .1599 <.0001 .6022 5.284 .0008

8.14 Summary table:

Variable
Step Entered Overall � p-Value Partial � Partial F p-Value

1 y4 .6392 <.0001 .6392 21.451 <.0001
2 y3 .5430 <.0001 .8495 6.554 .0147
3 y6 .4594 <.0001 .8461 6.549 .0148
4 y2 .4063 <.0001 .8843 4.578 .0394
5 y5 .3639 <.0001 .8957 3.959 .0547

In this case, the fifth variable to enter, y5, would not ordinarily be included
in the subset. The p-value of .0547 is large in this setting, where several tests
are run at each step and the variable with smallest p-value is selected.

8.15 Summary table:

Variable
Step Entered Overall � p-Value Partial � Partial F p-Value

1 y2 .6347 .0006 .6347 9.495 .0006
2 y3 .2606 <.0001 .4106 22.975 <.0001

CHAPTER 9

9.1 z1 − z2 = a′y1 − a′y2 = a′(y1 − y2) = (y1 − y2)
′S−1

pl (y1 − y2)

9.2 1
2 (z1 + z2) = 1

2 (a
′y1 + a′y2) = 1

2 a′(y1 + y2) = 1
2 (y1 − y2)

′S−1
pl (y1 + y2)

9.3 Write (9.7) in the form

f (y|G1)

f (y|G2)
>

p2

p1

and substitute f (y|Gi ) = Np(�i ,�) from (4.2) to obtain

f (y|G1)

f (y|G2)
= e(�1−�2)

′�−1y−(�1−�2)
′�−1(�1+�2)/2 >

p2

p1
.
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ANSWERS AND HINTS TO PROBLEMS 625

Substitute estimates for �1, �2, and �, and take the logarithm of both sides to
obtain (9.8). Note that if a > b, then ln a > ln b.

9.4 Maximizing pi f (y,Gi ) is equivalent to maximizing ln[pi f (y|Gi )]. Use
f (y|Gi ) = Np(�i ,�) from (4.2) and take the logarithm to obtain

ln[pi f (y|Gi )] = ln pi − 1
2 p ln(2π)− 1

2 |�| − 1
2 (y − �i )

′�−1(y − �i ).

Expand the last term, delete terms common to all groups (terms that do not
involve i), and substitute estimators of �i and � to obtain (9.11).

9.5 Use f (y|Gi ) = Np(�i ,�i ) in ln[pi f (y|Gi )], delete −(p/2) ln(2π), and sub-
stitute yi and Si for �i and �i .

9.6 (a) a′ = (y1 − y2)
′S−1

pl = (.345,−.130,−.106,−.143),

1
2 (z1 + z2) = −15.8054

(b)
Actual Number of

Predicted Group

Group Observations 1 2

1 19 19 0
2 20 1 19

Error rate = 1
39 = .0256

(c) Using the k nearest neighbor method with k = 5, we obtain the same
classification table as in part (b). With k = 4, two observations are mis-
classified, and the error rate becomes 2/39 = .0513.

9.7 (a) a′ = (y1 − y2)
′S−1

pl = (−.145, .052,−.005,−.089,−.007,−.022),

1
2 (z1 + z2) = −17.045

(b) Linear Classification

Actual Number of
Predicted Group

Group Observations 1 2

1 39 37 2
2 34 8 26

Error rate = (2 + 8)/73 = .1370

(c) p1 and p2 Proportional to Sample Sizes

Actual Number of
Predicted Group

Group Observations 1 2

1 39 37 2
2 34 8 26

Error rate = (2 + 8)/73 = .1370
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626 ANSWERS AND HINTS TO PROBLEMS

9.8 (a) a′ = (y1 − y2)
′S−1

pl = (−.057,−.010,−.242,−.071),

1
2 (z1 + z2) = −7.9686

(b) Linear Classification

Actual Number of
Predicted Group

Group Observations 1 2

1 9 8 1
2 10 1 9

Error rate = 2
19 = .1053

(c) Holdout Method

Actual Number of
Predicted Group

Group Observations 1 2

1 9 6 3
2 10 3 7

Error rate = (3 + 3)/19 = .3158

(d) Kernel Density Estimator with h = 2

Actual Number of
Predicted Group

Group Observations 1 2

1 9 9 0
2 10 1 9

Error rate = 1
19 = .0526

9.9 (a)

Actual Number of
Predicted Group

Group Observations 1 2

1 20 18 2
2 20 2 18

Error rate = (2 + 2)/40 = .100
(b) Four variables were selected by the stepwise discriminant analysis: y2, y3,

y4, and y6 (see Problem 8.14). With these four variables we obtain the
classification table in part (c).
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ANSWERS AND HINTS TO PROBLEMS 627

(c)

Actual Number of
Predicted Group

Group Observations 1 2

1 20 18 2
2 20 2 18

Error rate = (2 + 2)/40 = .100. The four variables classified the sam-
ple as well as did all six variables in part (a).

9.10 (a) By (9.10), Li (y) = y′
i S

−1
pl y − 1

2 y′
i S

−1
pl yi = c′

i y + c0i . The vectors
(c0i

ci

)
,

i = 1, 2, 3, are

Group 1 Group 2 Group 3

−72.77 −65.18 −68.57
.81 2.12 .68

15.15 10.11 2.79
−1.03 −.24 6.54
10.02 11.06 13.09

(b) Linear Classification

Actual Number of
Predicted Group

Group Observations 1 2 3

1 12 9 3 0
2 12 3 7 2
3 12 0 1 11

Error rate = (3 + 3 + 2 + 1)/36 = .250
(c) Quadratic Classification

Actual Number of
Predicted Group

Group Observations 1 2 3

1 12 10 2 0
2 12 2 8 2
3 12 0 1 11

Error rate = (2 + 2 + 2 + 1)/36 = .194
(d) Linear Classification–Holdout Method

Actual Number of
Predicted Group

Group Observations 1 2 3

1 12 7 5 0
2 12 4 5 3
3 12 0 1 11

Error rate = (5 + 4 + 3 + 1)/36 = .361
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628 ANSWERS AND HINTS TO PROBLEMS

(e) k Nearest Neighbor with k = 5

Actual Number of
Predicted Group

Group Observations 1 2 3

1 11 9 2 0
2 11 2 7 2
3 12 0 1 11

Error rate = (2 + 2 + 2 + 1)/34 = .206

9.11 (a) By (9.10), Li (y) = y′
i S

−1
pl y − 1

2 y′
i S

−1
pl yi = c′

i y + c0i . The vectors
(c0i

ci

)
,

i = 1, 2, . . . , 6, are
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

−300.0 −353.2 −328.5 −291.8 −347.5 −315.8
314.6 317.1 324.6 307.3 316.8 311.3
−59.4 −64.0 −65.2 −59.4 −65.8 −63.1
149.6 168.2 154.9 147.7 168.2 160.6

−161.2 −172.6 −150.4 −153.4 −172.9 −175.5

(b) Linear Classification

Actual Number of
Predicted Group

Group Observations 1 2 3 4 5 6

1 8 5 0 0 1 0 2
2 8 0 3 2 1 2 0
3 8 0 0 6 1 1 0
4 8 3 0 1 4 0 0
5 8 0 3 1 0 3 1
6 8 2 0 0 0 2 4

Correct classification rate = (5 + 3 + 6 + 4 + 3 + 4)/48 = .521
Error rate = 1 − .521 = .479

(c) Quadratic Classification

Actual Number of
Predicted Group

Group Observations 1 2 3 4 5 6

1 8 8 0 0 0 0 0
2 8 0 7 0 1 0 0
3 8 1 0 6 0 1 0
4 8 0 0 1 7 0 0
5 8 0 3 0 0 4 1
6 8 2 0 0 0 1 5

Correct classification rate = (8 + 7 + 6 + 7 + 4 + 5)/48 = .771
Error rate = −.771 = .229
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ANSWERS AND HINTS TO PROBLEMS 629

(d) k Nearest Neighbor with k = 3

Actual Number of
Predicted Group

Group Observations 1 2 3 4 5 6 Ties

1 8 5 0 0 2 0 0 1
2 8 0 4 0 0 1 0 3
3 8 1 0 6 0 1 0 0
4 8 0 0 0 5 0 0 3
5 8 0 1 0 0 6 1 0
6 8 2 0 0 0 0 5 1

Correct classification rate = (5 + 4 + 6 + 5 + 6 + 5)/40 = .775
Error rate = 1 − .775 = .225

(e) Normal Kernel with h = 1
(For this data set, larger values of h do much worse.)

Actual Number of
Predicted Group

Group Observations 1 2 3 4 5 6

1 8 8 0 0 0 0 0
2 8 0 8 0 0 0 0
3 8 1 0 6 0 1 0
4 8 1 0 0 7 0 0
5 8 0 0 0 0 7 1
6 8 2 0 0 0 0 6

Correct classification rate = (8 + 8 + 6 + 7 + 7 + 6)/48 = .875
Error rate = 1 − .875 = .125

CHAPTER 10

10.1 y−X�̂ =




y1
y2
...

yn


−




x′
1

x′
2
...

x′
n


�̂ =




y1
y2
...

yn


−




x′
1�̂

x′
2�̂
...

x′
n�̂


 =




y1 − x′
1�̂

y2 − x′
2�̂

...

yn − x′
n�̂




By (2.33),
∑n

i=1(yi − x′
i �̂)

2 = (y − X�̂)′(y − X�̂).

10.2
∑n

i=1(yi − µ)2 =∑n
i=1(yi − y + y − µ)2

=∑n
i=1(yi − y)2 + 2

∑n
i=1(yi − y)(y − µ)+∑n

i=1(y − µ)2

=∑n
i=1(yi − y)2 + (y − µ)

∑n
i=1(yi − y)+ n(y − µ)2

=∑i (yi − y)2 + n(y − µ)2 [since
∑n

i=1(yi − y) = 0]
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630 ANSWERS AND HINTS TO PROBLEMS

10.3
∑n

i=1(xi2 − x2)y = y
∑n

i=1(xi2 − x2) = y(
∑n

i=1 xi2 − nx2) = y(nx2 − nx2)

10.4 E[ŷi − E(yi)]2 = E[ŷi − E(ŷi)+ E(ŷi)− E(yi)]2

= E[ŷi − E(ŷi)]2 + 2E[ŷi − E(ŷi)][E(ŷi)− E(yi)]
+E[E(ŷi)− E(yi)]2

The second term on the right vanishes because [E(ŷi)− E(yi)] is constant and
E[ŷi − E(ŷi)] = E(ŷi)− E(ŷi) = 0. For the third term, we have E[E(ŷi)−
E(yi)]2 = [E(ŷi)− E(yi)]2, because [E(ŷi)− E(yi)]2 is constant.

10.5 First show that cov(�̂p) = σ 2(X′
pXp)

−1. This can be done by noting that

�̂p = (X′
pXp)

−1X′
py = Ay, say. Then, by (3.74), cov(Ay) = A cov(y)A′ =

A(σ 2I)A′ = σ 2AA′. By substituting A = (X′
pXp)

−1X′
p, this becomes

cov(�̂p) = σ 2(X′
pXp)

−1. Then, by (3.70), var(x′
pi �̂p) = x′

pi cov(�̂p)xpi
and the remaining steps follow as indicated.

10.6 By (10.36), s2
p = SSEp/(n − p). Then by (10.44),

Cp = p + (n − p)
s2

p − s2
k

s2
k

= p + (n − p)

(
s2

p

s2
k

− 1

)

= p + (n − p)
s2

p

s2
k

− (n − p) = (n − p)
SSEp/s2

k

n − p
− n + 2p

= SSEp

s2
k

− (n − 2p).

10.7 (Y − XB̂)′(Y − XB̂) = Y′Y − Y′XB̂ − B̂′X′Y − B̂′X′XB̂. Transpose B̂ =
(X′X)−1X′Y from (10.46) and substitute into B̂′X′XB̂.

10.8 E[ŷi − E(yi )][ŷi − E(yi )]′ = E[ŷi − E(ŷi )+ E(ŷi)− E(yi )][ŷi − E(ŷi )

+E(ŷi )− E(yi )]′
= E[ŷi − E(ŷi )][ŷi − E(ŷi )]′

+E[ŷi − E(ŷi )][E(ŷi)− E(yi )]′
+E[E(ŷi)− E(yi)][ŷi − E(ŷi )]′
+E[E(ŷi)− E(yi)][E(ŷi)− E(yi )]′

The second and third terms are equal to O because [E(ŷi) − E(yi)] is a
constant vector and E[ŷi − E(ŷi)] = E(ŷi )− E(ŷi) = 0. The fourth term is a
constant matrix and the first E can be deleted.

10.9 As in Problem 10.5, we have cov(�̂p( j)) = σ j j (X′
pXp)

−1, where σ j j =
var(y j ) is the j th diagonal element of � = cov(y). Similarly, cov(�̂p( j),

�̂p(k)) = σ jk(X′
pXp)

−1, where σ jk = cov(y j , yk) is the ( jk)th element of �.
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ANSWERS AND HINTS TO PROBLEMS 631

The notation cov(�̂p( j), �̂p(k)) indicates a matrix containing the covariance
of each element of �̂p( j) and each element of �̂p(k). Now for the covariance
matrix, cov(ŷ′

i ) = cov(x′
pi �̂p(1), . . . , x′

pi �̂p(m)), we need the variance of each
of the m random variables and the covariance of each pair. By Problem 10.5
and (3.70), var(x′

pi �̂p(1)) = x′
pi cov(�̂p(1))xpi = σ11x′

pi (X
′
pXp)

−1xpi . Sim-

ilarly, cov(x′
pi �̂p(1), x′

pi �̂p(2)) = σ12x′
pi (X

′
pXp)

−1xpi . The other variances
and covariances can be obtained in an analogous manner.

10.10 By (10.77), Sp = Ep/(n − p). Then by (10.83),

Cp = pI + (n − p)S−1
k (Sp − Sk)

= pI + (n − p)S−1
k

Ep

n − p
− (n − p)I

= S−1
k Ep + (2p − n)I.

10.11 |E−1
k Ep| = |E−1

k ||Ep| > 0, because both E−1
k and Ep are positive definite.

10.12 By (10.84), Cp = S−1
k Ep + (2p − n)I. Using Sk = Ek/(n − k), we obtain

(
Ek

n − k

)−1

Ep = Cp − (2p − n)I,

(n − k)E−1
k Ep = Cp + (n − 2p)I.

10.13 If Cp is replaced by pI in (10.86), we obtain

E−1
k Ep = Cp + (n − 2p)I

n − k
= pI + nI − 2pI

n − k
= (n − p)I

n − k
.

10.14 (a) B̂ =




.6264 83.243

.0009 .029
−.0010 −.013
.0015 −.004




(b) � = .724, V (s) = .280, U (s) = .375, θ = .264
(c) λ1 = .3594, λ2 = .0160. The essential rank of B̂1 is 1, and the power

ranking is θ > U (s) > � > V (s).
(d) The Wilks’ � test of x2 adjusted for x1 and x3, for example, is given by

(10.65) as

�(x2|x1, x3) = �(x1, x2, x3)

�(x1, x3)
,

which is distributed as �p,1,n−4 and has an exact F-transformation. The
tests for x1 and x3 are similar. For the three tests we obtain the following:
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632 ANSWERS AND HINTS TO PROBLEMS

� F p-Value

x1|x2, x3 .931 1.519 .231
x2|x1, x3 .887 2.606 .086
x3|x1, x2 .762 6.417 .004

10.15 (a) B̂ =

 34.282 35.802

.394 .245

.529 .471




(b) � = .377, V (s) = .625, U (s) = 1.647, θ = .622
(c) λ1 = 1.644, λ2 = .0029. The essential rank of B̂1 is 1, and the power

ranking is θ > U (s) > � > V (s).
(d) � F p-Value

x1|x2 .888 1.327 .287
x2|x1 .875 1.506 .245

10.16 (a) B̂ =




54.870 65.679 58.106
.054 −.048 .018

−.024 .163 .012
.107 −.036 .125




(b) � = .665, V (s) = .365, U (s) = .458, θ = .240
(c) λ1 = .3159, λ2 = .1385, λ3 = .0037. The essential rank of B̂1 is 2, and

the power ranking is V (s) > � > U (s) > θ .
(d) � F p-Value

x1|x2, x3 .942 .903 .447
x2|x1, x3 .847 2.653 .060
x3|x1, x2 .829 3.020 .040

(e) � F p-Value

y1|y2, y3 .890 1.804 .160
y2|y1, y3 .833 2.932 .044
y3|y1, y2 .872 2.159 .106

10.17 (a) B̂ =




−4.140 4.935
1.103 −.955
.231 −.222

1.171 1.773
.111 .048
.617 −.058
.267 .485

−.263 −.209
−.004 −.004




Test of overall regression of (y1, y2) on (x1, x2, . . . , x8):� = .4642 (with
p = 2, exact F = 1.169, p-value = .332). Tests on subsets (the F’s are
exact because p = 2):
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ANSWERS AND HINTS TO PROBLEMS 633

� F p-Value

(b) x7, x8|x1, x2, . . . , x6 .856 .808 .527
(c) x4, x5, x6|x1, x2, x3, x7, x8 .674 1.457 .218
(d) x1, x2, x3|x4, x5, . . . , x8 .569 2.170 .066

10.18 (a) The overall test of (y1, y2) on (x1, x2, . . . , x8) gives � = .4642, with
(exact) F = 1.169 (p-value = .332). Even though this test result is not
significant, we give the results of a backward elimination for illustrative
purposes:

Partial �-Test on Each xi Using (10.72)
Step x1 x2 x3 x4 x5 x6 x7 x8

1 .723 .969 .817 .859 .821 .945 .924 .943
2 .741 .801 .851 .839 .948 .927 .940
3 .737 .837 .798 .757 .949 .938
4 .675 .852 .821 .794 .925
5 .680 .861 .835 .817
6 .701 .805 .806
7 .855 .930
8 .891

At each step, the variable deleted was not significant. In fact, the variable
remaining at the last step, x1, is not a significant predictor of y1 and y2.

(b) There were no significant x’s, but to illustrate, we will use the three x’s at
step 6 and test for each y:

� F p-Value

y1|y2 .701 3.548 .029
y2|y1 .808 1.984 .142

10.19 (a) B̂ =




43.703 46.793 187.923
.019 −.098 1.016
.139 .185 −4.953
.204 .107 1.606




� = .167, V (s) = .883, U (s) = 4.709, θ = .823

(b) B̂ =




99.817 −29.120 121.595
−.008 −.224 −.027
.097 1.252 5.775

−.049 −.442 −1.768
−.022 −.631 −.488
−.159 2.128 4.387
.054 −.037 −.476




� = .110, V (s) = 1.350, U (s) = 4.319, θ = .769
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634 ANSWERS AND HINTS TO PROBLEMS

(c) B̂ =




710.236 123.403
−1.625 .055
24.648 .094
−8.622 −.334
−8.224 .462
23.626 −.110
2.862 .427

−16.186 −.267
−.268 .014

−1.160 −.336




� = .102, V (s) = 1.236, U (s) = 5.475, θ = .827
10.20 Using a backward elimination based on (10.72), we obtain the following partial

�-values:
Step x1 x2 x3 x4 x5 x6 x7 x8 x9

1 .993 .962 .916 .958 .919 .879 .981 .999 .797
2 .994 .962 .916 .956 .909 .874 .980 .626
3 .951 .883 .954 .912 .873 .981 .626
4 .948 .884 .955 .861 .867 .561
5 .953 .862 .840 .803 .561
6 .830 .781 .783 .535

At step 6, we stop and retain all four x’s because each � has a p-value less
than .05.

CHAPTER 11

11.1 By (3.38), Syy = DyRyyDy and Sxx = Dx Rxx Dx , where Dy and Dx are
defined below (11.14). Similarly, Syx = DyRyxDx and Sxy = Dx RxyDy .
Substitute these into (11.7), replace I by D−1

y Dy , and factor out Dy on the
right.

11.2 Multiply (11.7) by S−1
xx Sxy on the left to obtain (S−1

xx SxyS−1
yy SyxS−1

xx Sxy −
r2S−1

xx Sxy)a = 0. Factor out S−1
xx Sxy on the right to write this in the form

(S−1
xx SxyS−1

yy Syx − r2I)S−1
xx Sxya = 0. Upon comparing this to (11.8), we see

that b = S−1
xx Sxya.

11.3 When p = 1, s is also 1, and there is only one canonical correlation, which
is equal to R2 from multiple regression [see comments between (11.28) and
(11.29)]. Thus

� = 1 − r2
1

1 − c2
1

= 1 − R2
f

1 − R2
r
.
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ANSWERS AND HINTS TO PROBLEMS 635

11.4 F = (1 −�)(n − q − 1)

�h
= [1 − (1 − R2

f )/(1 − R2
r )](n − q − 1)

[(1 − R2
f )/(1 − R2

r )]h
= [1 − R2

r − (1 − R2
f )](n − q − 1)

(1 − R2
f )h

= (R2
f − R2

r )(n − q − 1)

(1 − R2
f )h

11.5 By (11.39),

r2
i = λi

1 + λi
, r2

i + r2
i λi = λi , λi (1 − r2

i ) = r2
i .

11.6 Substitute E = (n − 1)(Syy − SyxS−1
xx Sxy) and H = (n − 1)SyxS−1

xx Sxy from
(11.44) and (11.45) into (11.41):

Ha = λEa,

(n − 1)SyxS−1
xx Sxya = (n − 1)λ(Syy − SyxS−1

xx Sxy)a,

SyxS−1
xx Sxya = λ(Syy − SyxS−1

xx Sxy)a.

11.7 By (11.42), SyxS−1
xx Sxya = r2Syya. Subtracting r2SyxS−1

xx Sxya from both
sides gives

SyxS−1
xx Sxya − r2SyxS−1

xx Sxya = r2Syya − r2SyxS−1
xx Sxya,

(1 − r2)SyxS−1
xx Sxya = r2(Syy − SyxS−1

xx Sxy)a.

11.8 (a) r1 = .5142, r2 = .1255
(b) c1 c2 d1 d2

y1 1.020 −.048 x1 .436 .823
y2 −.160 1.009 x2 −.704 −.455

x3 1.081 −.401

(c) k � Approximate F p-Value

1 .7240 2.395 .035
2 .9843 .336 .716

11.9 (a) r1 = .7885, r2 = .0537
(b) c1 c2 d1 d2

y1 .5522 −1.3664 x1 .5044 −1.7686
y2 .5215 1.3784 x2 .5383 1.7586

(c) k � Approximate F p-Value

1 .3772 6.5972 .0003
2 .9971 .0637 .8031
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636 ANSWERS AND HINTS TO PROBLEMS

11.10 (a) r1 = .4900, r2 = .3488, r3 = .0609
(b) c1 c2 c3 d1 d2 d3

y1 .633 .091 .806 x1 .482 −.262 1.054
y2 −.624 .816 .147 x2 −.578 1.024 −.059
y3 .643 .400 −.690 x3 .865 .216 −.626

(c) k � Approximate F p-Value

1 .665 2.175 .029
2 .875 1.552 .194
3 .996 .171 .681

11.11 (a) r1 = .6251, r2 = .4135
(b) c1 c2

y1 1.120 −.007
y2 −.498 1.003

d1 d2

x1 1.091 −.794
x2 .184 −.288
x3 .842 1.807
x4 .944 .641
x5 1.040 −.154
x6 .215 1.256
x7 −.603 −.528
x8 −.641 −.588

(c) k � Approximate F p-Value

1 .4642 1.1692 .3321
2 .7553 .9718 .4766

11.12 (b) By (11.34),

�(x7, x8|x1, x2, . . . , x6) =
∏2

i=1(1 − r2
i )∏2

i=1(1 − c2
i )
,

where r2
1 and r2

2 are the squared canonical correlations from the full model,
and c2

1 and c2
2 are the squared canonical correlations from the reduced

model:

�(x7, x8|x1, x2, . . . , x6) = (1 − .62082)(1 − .49472)

(1 − .26502)(1 − .08862)
= .4643

.9225
= .5033

(c) �(x4, x5, x6|x1, x2, x3, x7, x8) = (1 − .62082)(1 − .49472)

(1 − .33012)(1 − .17072)

= .4643

.8651
= .5367
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ANSWERS AND HINTS TO PROBLEMS 637

(d) �(x1, x2, x3|x4, x5, . . . , x8) = (1 − .62082)(1 − .49472)

(1 − .48312)(1 − .21852)

= .4643

.7300
= .6359

11.13 (a) r1 = .9279, r2 = .5622, r3 = .1660,

k � Approximate F p-Value

1 .0925 17.9776 <.0001
2 .6651 4.6366 .0020
3 .9725 1.1898 .2816

(b) r1 = .8770, r2 = .6776, r3 = .3488,

k � Approximate F p-Value

1 .1097 6.919 <.0001
2 .4751 3.427 .001
3 .8783 1.351 .269

(c) r1 = .9095, r2 = .6395,

k � Approximate F p-Value

1 .1022 8.2757 <.0001
2 .5911 3.1129 .0089

(d) r1 = .9029, r2 = .7797, r3 = .3597, r4 = .3233, r5 = .0794,
k � Approximate F p-Value

1 .0561 4.992 <.0001
2 .3037 2.601 .0007
3 .7747 .829 .6210
4 .8898 .761 .6030
5 .9937 .124 .8840

CHAPTER 12

12.1 From λ = a′Sa/a′a in (12.7), we obtain λa′a = aSa, which can be factored
as a′(Sa − λa) = 0. Since a = 0 is not a solution to λ = a′Sa/a′a, we have
Sa − λa = 0.

12.2 |R − λI| = 0,

∣∣∣∣ 1 − λ r
r 1 − λ

∣∣∣∣ = (1 − λ)2 − r2 = 0,

(1 − λ+ r)(1 − λ− r) = 0, λ = 1 ± r
With λ1 = 1 + r in (R − λ1I)a1 = 0, we obtain( −r r

r −r

)(
a11
a12

)
=
(

0
0

)
,

which gives a11 = a12 for any r . Normalizing to a′
1a1 = 1, yields a11 = 1/

√
2.
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638 ANSWERS AND HINTS TO PROBLEMS

12.3 (a) By (4.14) and a comment in Section 7.1, the likelihood ratio is given by
LR = (|S|/|S0|)n/2, where S0 is the estimate of � under H0. By (2.108)
and (7.6), the test statistic is

−2 ln LR = −2 ln

( |S|
|S0|

)n/2

= −2
(n

2

)
ln

∏p−k
i=1 λi

∏p
i=p−k+1 λi∏p−k

i=1 λi
∏p

i=p−k+1 λ

= −n ln

∏p
i=p−k+1 λi

λ
k

= n

(
k lnλ−

p∑
i=p−k+1

lnλi

)
.

In (12.15), the coefficient n is modified to give an improved chi-square
approximation.

12.4 If S is diagonal, then λi = sii , as in (12.17). Thus

Sai = λi ai = sii ai ,


s11 0 · · · 0
0 s22 · · · 0
...

...
...

0 0 · · · spp






ai1
ai2
...

aip


 =




s11ai1
s22ai2
...

sppaip


 =




sii ai1
sii ai2
...

sii aip


 .

From the first element, we obtain s11ai1 = sii ai1 or (s11 − sii )ai1 = 0.
Since s11 − sii 
= 0 (unless i = 1), we must have ai1 = 0. Thus, ai =
(0, . . . , 0, aii , 0, . . . , 0)′, and normalizing ai leads to aii = 1.

12.5 By (10.34) and (12.2),

R2
yi |z1,... ,zk

= s′
yi zS−1

zz syi z

s2
yi

= (syi z1, syi z2, . . . , syi zk )




s2
z1

0 · · · 0
0 s2

z2
· · · 0

...
...

...

0 0 · · · s2
zk




−1


syi z1

syi z2
...

syi zk



/

s2
yi
.

Show that this is equal to

R2
yi |z1,... ,zk

=
k∑

j=1

s2
yi z j

s2
z j

s2
yi

=
k∑

j=1

r2
yi z j
.

12.6 The variances of y1, y2, x1, x2, and x3 on the diagonal of S are .016, 70.6,
1106.4, 2381.9, and 2136.4. The eigenvalues of S and R are as follows:
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ANSWERS AND HINTS TO PROBLEMS 639

S R

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λ j Cumulative

3466.18 .608607 .60861 1.72 .34 .34
1264.47 .222021 .83063 1.23 .25 .59
895.27 .157195 .98782 .96 .19 .78
69.34 .012174 .99999 .79 .16 .94

.01 .000002 1.00000 .30 .06 1.00

Two principal components of S account for 83% of the variance, but it
requires three principal components of R to reach 78%. For most purposes
we would use two components of S, although with three we could account for
99% of the variance. However, we show all five eigenvectors below because of
the interesting pattern they exhibit. The first principal component is largely a
weighted average of the last two variables, x2 and x3, which have the largest
variances. The second and third components represent contrasts in the last
three variables and could be described as “shape” components. The fourth and
fifth components are associated uniquely with y2 and y1, respectively. These
components are “variable specific,” as described in the discussion of method 1
in Section 12.6. As expected, the principal components of R show an entirely
different pattern. All five variables contribute to the first three components of
R, whereas in S, y1 and y2 have small variances and contribute almost nothing
to the first three components. The eigenvectors of S and R are as follows:

S R

a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

y1 .0004 −.0008 .0018 .0029 .9999 .42 .53 −.42 −.40 .46
y2 −.0080 .0166 .0286 .9994 −.0029 .07 .68 .16 .70 −.10
x1 .1547 .6382 .7535 −.0309 −.0008 .36 .20 .76 −.44 −.24
x2 .7430 .4279 −.5145 .0136 .0009 .54 −.43 .25 .39 .56
x3 .6511 −.6397 .4083 .0042 −.0015 .63 −.18 −.40 .10 −.64

12.7 S =




65.1 33.6 47.6 36.8 25.4
33.6 46.1 28.9 40.3 28.4
47.6 28.9 60.7 37.4 41.1
36.8 40.3 37.4 62.8 31.7
25.4 28.4 41.1 31.7 58.2




R =




1.00 .61 .76 .58 .41
.61 1.00 .55 .75 .55
.76 .55 1.00 .61 .69
.58 .75 .61 1.00 .52
.41 .55 .69 .52 1.00



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640 ANSWERS AND HINTS TO PROBLEMS

The eigenvalues of S and R are as follows:

S R

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λi Cumulative

200.4 .684 .684 3.42 .683 .683
36.1 .123 .807 .61 .123 .806
34.1 .116 .924 .57 .114 .921
15.0 .051 .975 .27 .054 .975
7.4 .025 1.000 .13 .025 1.000

The first three eigenvectors of S and R are as follows:

S R

a1 a2 a3 a1 a2 a3

.47 −.58 −.42 .44 −.20 −.68

.39 −.11 .45 .45 −.43 .35

.49 .10 −.48 .47 .37 −.38

.47 −.12 .62 .45 −.39 .33

.41 .80 −.09 .41 .70 .41

The variances in S are nearly identical, and the covariances are likewise similar
in magnitude. Consequently, the percent of variance explained by the eigenval-
ues of S and R are indistinguishable. The interpretation of the second principal
component from S is slightly different from that of the second one from R, but
otherwise there is little to choose between them.

12.8 The variances on the diagonal of S are 95.5, 73.2, 76.2, 808.6, 505.9, and
508.7. The eigenvalues of S and R are as follows:

S R

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λ j Cumulative

1152.0 .557 .557 2.17 .363 .363
394.1 .191 .748 1.08 .180 .543
310.8 .150 .898 .98 .163 .706
97.8 .047 .945 .87 .144 .850
68.8 .033 .978 .55 .092 .942
44.6 .022 1.000 .35 .058 1.000

We could keep either two or three components from S. The first three com-
ponents of S account for a larger percent of variance than do the first three
from R. The first three eigenvectors of S and R are as follows:
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ANSWERS AND HINTS TO PROBLEMS 641

S R

a1 a2 a3 a1 a2 a3

.080 .092 −.069 .336 .176 .497

.034 −.018 .202 .258 .843 −.093

.076 .122 −.011 .370 .049 .466

.758 −.446 −.469 .475 −.329 −.358

.493 −.081 .844 .486 .079 −.567

.412 .878 −.147 .471 −.376 .278

As expected, the first three principal components from S are heavily influ-
enced by the last three variables because of their relatively large variances.

12.9 The variances on the diagonal of S are .69; 5.4; 2,006, 682.4; 90.3; 56.4; 18.1.
With the large variance of y3, we would expect the first principal component
from S to account for most of the variance, and y3 would essentially constitute
that single component. This is indeed the pattern that emerges in the eigen-
values and eigenvectors of S. The principal components from R, on the other
hand, are not dominated by y3. The eigenvalues of S and R are as follows:

S R

λi λi/
∑

j λ j λi λi/
∑

j λ j Cumulative

2,006,760 .999954 2.42 .404 .404
65 .000033 1.40 .234 .638
18 .000009 1.03 .171 .809
7 .000003 .92 .153 .963
3 .000001 .20 .033 .996
0 .000000 .02 .004 1.000

Most of the correlations in R are small (only three exceed .3), and its first
three principal components account for only 72% of the variance. The first
three eigenvectors of S and R are as follows:

S R

a1 a2 a3 a1 a2 a3

.00016 .005 −.0136 .424 −.561 −.150

.00051 .017 .0787 .446 −.528 .087

.99998 −.001 −.0002 .563 .387 −.051

.00529 .698 .0174 .454 .267 .166

.00322 −.716 .0195 .303 .425 −.296

.00020 .025 .9965 .073 .069 .923
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642 ANSWERS AND HINTS TO PROBLEMS

12.10 Covariance matrix for males:

SM =




5.19 4.55 6.52 5.25
4.55 13.18 6.76 6.27
6.52 6.76 28.67 14.47
5.25 6.27 14.47 16.65




Covariance matrix for females:

SF =




9.14 7.55 4.86 4.15
7.55 18.60 10.22 5.45
4.86 10.22 30.04 13.49
4.15 5.45 13.49 28.00




The eigenvalues are as follows:

Males Females

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λ j Cumulative

43.56 .684 .684 48.96 .571 .571
11.14 .175 .858 18.46 .215 .786
6.47 .102 .960 13.54 .158 .944
2.52 .040 1.000 4.82 .056 1.000

The first two eigenvectors are as follows:

Males Females

a1 a2 a1 a2

.24 .21 .22 .27

.31 .85 .39 .62

.76 −.48 .68 .17

.52 .09 .58 −.72

The variances in SM have a slightly wider range (5.19–28.67) than those in
SF (9.14–30.04), and this is reflected in the eigenvalues. The first two compo-
nents account for 86% of the variance from SM , whereas the first two account
for 79% from SF .

12.11 Covariance matrix for species 1:

S1 =




187.6 176.9 48.4 113.6
176.9 345.4 76.0 118.8
48.4 76.0 66.4 16.2

113.6 118.8 16.2 239.9



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ANSWERS AND HINTS TO PROBLEMS 643

Covariance matrix for species 2:

S2 =




101.8 128.1 37.0 32.6
128.1 389.0 165.4 94.4
37.0 165.4 167.5 66.5
32.6 94.4 66.5 177.9




The eigenvalues are as follows:

Species 1 Species 2

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λ j Cumulative

561.3 .669 .669 555.7 .664 .664
169.0 .201 .870 145.4 .174 .838
65.3 .078 .948 93.5 .112 .950
43.7 .057 1.000 41.7 .050 1.000

The first two eigenvectors are as follows:

Species 1 Species 2

a1 a2 a1 a2

.50 .01 .28 −.20

.72 −.48 .81 −.34

.17 −.22 .42 .14

.45 .85 .30 .91

The variances in S1 have a wider range than those in S2, and the first two
components of S1 account for a higher percent of variance.

12.12 The variances on the diagonal of S in each case are:
(a) Pooled: 536.0, 59.9, 116.0, 896.4, 248.1, 862.0,
(b) Unpooled: 528.2, 68.9, 145.2, 1366.4, 264.4, 1069.1.

The eigenvalues are as follows:

Pooled Unpooled

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λ j Cumulative

1050.6 .386 .386 1722.0 .500 .500
858.3 .316 .702 878.4 .255 .755
398.9 .147 .849 401.4 .117 .872
259.2 .095 .944 261.1 .076 .948
108.1 .040 .984 128.9 .037 .985
43.4 .016 1.000 50.4 .015 1.000
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644 ANSWERS AND HINTS TO PROBLEMS

The first three eigenvectors are as follows:

Pooled Unpooled

a1 a2 a3 a1 a2 a3

.441 −.190 .864 .212 .389 .888

.041 −.038 .082 −.039 .064 .096
−.039 .031 .143 .080 −.066 .081

.450 .892 −.033 .776 −.608 .081
−.019 −.001 −.054 −.096 .010 .015

.774 −.407 −.471 .580 .686 −.434

(c) The pattern in eigenvalues as well as eigenvectors is similar for the pooled
and unpooled cases. The first three principal components account for
87.2% of the variance in the unpooled case compared to 84.9% for the
pooled case.

12.13 The variances on the diagonal of S in each case are:
(a) Pooled: 49.1, 8.1, 12140.8, 136.2, 210.8, 2983.9,
(b) Unpooled: 63.2, 8.0, 15168.9, 186.6, 255.4, 4660.7.
The eigenvalues are as follows:

Pooled Unpooled

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λ j Cumulative

12,809.0 .8249 .8249 17,087.0 .8400 .8400
2,455.9 .1582 .9830 2,958.0 .1454 .9854

137.1 .0088 .9918 168.6 .0083 .9937
77.2 .0050 .9968 77.1 .0038 .9974
42.2 .0027 .9995 44.7 .0022 .9996
7.4 .0005 1.0000 7.3 .0004 1.0000

The eigenvectors are as follows:

Pooled Unpooled

a1 a2 a1 a2

−.004 −.000 .013 .027
−.005 .004 −.004 .004

.968 −.233 .931 −.355
−.002 .023 .028 .069

.103 .041 .103 .021

.228 .971 .350 .932

12.14 The variances on the diagonal of S are all less than 1, except s2
x4

= 5.02
and s2

x8
= 1541.08. We therefore expect the last variable, x8, to dominate the

principal components of S. This is the case for S but not for R. The eigenvalues
of S and R are as follows:
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ANSWERS AND HINTS TO PROBLEMS 645

S R

λi λi/
∑

j λ j λi λi/
∑

j λ j Cumulative

1541.55 .996273 3.174 .317 .317
4.83 .003123 2.565 .256 .574

.44 .000286 1.432 .143 .717

.27 .000174 1.277 .128 .845

.10 .000066 .542 .054 .899

.07 .000043 .473 .047 .946

.02 .000014 .251 .025 .971

.02 .000011 .118 .012 .983

.01 .000005 .104 .010 .994

.00 .000003 .064 .006 1.000

The eigenvectors of S and R are as follows:

S R

a1 a2 a1 a2 a3 a4

.0009 −.005 .12 .19 .69 .10

.0007 −.034 .06 .32 .54 .26

.0029 −.007 .46 −.06 .07 −.38

.0014 .004 .29 .17 −.18 .49

.0059 −.009 .52 .14 −.04 −.01
−.0150 .982 −.09 −.42 .07 .55
−.0028 −.092 −.31 .45 −.01 −.14
−.0022 −.158 −.23 .54 −.14 −.10

.0044 −.011 .09 .36 −.38 .44

.9998 .014 .50 .11 −.13 −.09

12.15 The variances in the diagonal of S are: 55.7, 10.9, 402.7, 25.7, 13.4, 438.3, 1.5,
106.2, 885.6, 22227.2, 214.1.
The eigenvalues of S and R are as follows:

S R

λi λi/
∑

j λ j Cumulative λi λi/
∑

j λ j Cumulative

22,303.5 .91479 .91479 6.020 .54730 .54730
1590.7 .06524 .98003 2.119 .19267 .73996
358.0 .01469 .99471 1.130 .10275 .84272

63.4 .00260 .99731 .760 .06909 .91181
29.3 .00120 .99852 .355 .03231 .94411
17.1 .00070 .99922 .259 .02358 .96769
12.7 .00052 .99974 .122 .01110 .97879
2.8 .00012 .99986 .110 .01004 .98883
1.9 .00008 .99994 .060 .00544 .99427
.9 .00004 .99997 .042 .00384 .99810
.7 .00003 1.00000 .021 .00190 1.00000
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646 ANSWERS AND HINTS TO PROBLEMS

The eigenvectors of S and R are as follows:

S R

a1 a2 a1 a2 a3 a4

y1 −.0097 .1331 .3304 −.0787 .0880 −.2807
y2 .0006 .0608 .3542 .1928 .1071 −.2301
y3 −.0141 .4397 .3923 .0518 .1105 −.1413
y4 −.0033 .1078 .3820 .0474 .1334 −.0104
y5 .0101 .0398 .2323 .5303 .0154 −.0710
y6 .0167 .4290 .3621 .2361 .1198 .1350
y7 −.0012 −.0072 −.0884 .0213 .7946 .5414
y8 .0275 −.1844 −.2501 .5023 .0826 −.1506
y9 .0456 −.6657 −.3111 .3595 .2136 −.2278

y10 .9982 .0346 −.0243 .4685 −.4669 .5001
y11 .0034 .3311 .3357 −.1153 −.1853 .4550

For most purposes, one or two principal components would suffice for S, with
91% or 98% of the variance explained. For R, on the other hand, three compo-
nents are required to explain 84% of the variance, and seven components are
necessary to reach 98%. The reduction to one or two components for S is due
in part to the relatively large variances of y3, y6, y9, and y10. In the eigenvec-
tors of S, we see that these four variables figure prominently in the first two
principal components.

CHAPTER 13

13.1 var(yi ) = var(yi − µi ) = var(λi1 f1 + λi2 f2 + · · · + λim fm + εi )

=∑m
j=1 λ

2
i j var( f j )+ var(εi )+∑ j 
=k λi jλik cov( f j , fk)

+∑m
j=1 λi j cov( f j , εi )

=∑m
j=1 λ

2
i j + ψi .

The last equality follows by the assumptions var( f j ) = 1, var(εi ) = ψi ,
cov( f j , fk) = 0, and cov( f j , εi ) = 0.

13.2 cov(y, f)=cov(�f + �, f) [by (13.3)]

=cov(�f, f) [by (13.10)]

=E[�f − E(�f)][f − E(f)]′ [by analogy to (3.31)]

=E[�f − �E(f)][f − E(f)]′
=�E[f − E(f)][f − E(f)]′
=� cov(f) = � [by (13.7)]
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ANSWERS AND HINTS TO PROBLEMS 647

13.3 E(f∗) = E(T′f) = T′E(f) = T′0 = 0,

cov(f∗) = cov(T′f) = T′ cov(f)T = T′IT = I

13.4 Let E = S − (�̂�̂′ + �̂). Then by (2.98), tr(E′E) = ∑
i j e2

i j . By (13.26),

�̂ = diag(S−�̂�̂′), and E has zeros on the diagonal. This gives the inequality

∑
i j

e2
i j ≤ sum of squared elements of S − �̂�̂′.

By (2.98),

Sum of squared elements of S − �̂�̂′ = tr(S − �̂�̂′)′(S − �̂�̂′).

Since S − �̂�̂′ is symmetric, we have by (13.20), (13.23), and (13.24),

S − �̂�̂′ = CDC′ − C1D1/2
1 D1/2

1 C′
1

= CDC′ − C1D1C′
1,

where C = (c1, c2, . . . , cp) contains normalized eigenvectors of S,D =
diag(θ1, θ2, . . . , θp) contains eigenvalues of S,C1 = (c1, c2, . . . , cm), and
D1 = diag(θ1, θ2, . . . , θm).

Using the partitioned forms C = (C1,C2) and D =
(

D1 O
O D2

)
, show

that C′
1C1 = Im,C′

1C2 = O,C′C1 =
(

Im

O

)
, D
(

Im

O

)
=
(

D1
O

)
,

C
(

D1
O

)
= C1D1, and CDC′C1D1C′

1 = C1D2
1C′

1. Show similarly that

C1D1C′
1CDC′ = C1D2

1C′
1 and C1D1C′

1C1D1C′
1 = C1D2

1C′
1. Now by (2.97)

tr(CD2C′) = tr(C′CD2) = tr(D2) = ∑p
i=1 θ

2
i . Similarly, tr(C1D2

1C′
1) =∑m

i=1 θ
2
i . Then

tr(S − �̂�̂′)′(S − �̂�̂′) = tr(CDC′ − C1D1C′
1)(CDC′ − C1D1C′

1)

= tr(CDC′CDC′ − CDC′C1D1C′
1 − C1D1C′

1CDC′

+C1D1C′
1C1D1C′

1)

=
p∑

i=1

θ2
i −

m∑
i=1

θ2
i −

m∑
i=1

θ2
i +

m∑
i=1

θ2
i

=
p∑

i=m+1

θ2
i .
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648 ANSWERS AND HINTS TO PROBLEMS

13.5
∑p

i=1

∑m
j=1 λ̂

2
i j =∑p

i=1

[∑m
j=1 λ̂

2
i j

]
=∑p

i=1 ĥ2
i [by (13.28)]

By interchanging the order of summation, we have

p∑
i=1

m∑
j=1

λ̂2
i j =

m∑
j=1

p∑
i=1

λ̂2
i j =

m∑
j=1

θ j [by (13.29)].

13.6 We use the covariance matrix to avoid working with standardized variables.
The eigenvalues of S are 39.16, 8.78, .66, .30, and 0. The eigenvector corre-
sponding to λ5 = 0 is

a′
5 = (−.75,−.25, .25, .50, .25).

As noted in Section 12.7, s2
z5

= 0 implies z5 = 0. Thus

z5 = a′
5y = −.75y1 − .25y2 + .25y3 + .50y4 + .25y5 = 0,

3y1 + y2 = y3 + 2y4 + y5.

13.7 Words data of Table 5.9:

Principal Varimax
Component Rotated
Loadings Loadings Communalities,

f1 f2 f1 f2 ĥ2
i

Variables
Informal words .802 −.535 .956 .129 .930
Informal verbs .856 −.326 .858 .321 .839
Formal words .883 .270 .484 .786 .853
Formal verbs .714 .658 .101 .966 .943

Variance 2.666 .899 1.894 1.671 3.565

Proportion .666 .225 .474 .418 .891

The orthogonal matrix T for the varimax rotation as given by (13.49) is

T =
(

.750 .661
−.661 .750

)
.

Thus sinφ = −.661 and φ = −41.4◦. A graphical rotation of −40◦ would
produce results very close to the varimax rotation.
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ANSWERS AND HINTS TO PROBLEMS 649

13.8 Ramus bone data of Table 3.6:

Principal Varimax Orthoblique
Component Rotated Pattern
Loadings Loadings Communalities, Loadings

f1 f2 f1 f2 ĥ2
i f1 f2

Variables
8 years .949 −.295 .884 .455 .988 −.108 1.087
8 1

2 years .974 −.193 .830 .545 .986 .106 .900
9 years .978 .171 .578 .808 .986 .825 .188
9 1

2 years .943 .319 .449 .888 .991 1.099 −.121

Variance 3.695 .255 2.005 1.946 3.951

Proportion .924 .064 .501 .486 .988

The Harris–Kaiser orthoblique rotation produced loadings for which the
variables have a complexity of 1. These oblique loadings provide a much
cleaner simple structure than that given by the varimax loadings. For interpre-
tation, we see that one factor represents variables 1 and 2, and the other factor
represents variables 3 and 4. This same clustering of variables can be deduced
from the varimax loadings if we simply use the larger of the two loadings for
each variable.

The correlation between the two oblique factors is .87. The angle between
the oblique axes is cos−1(.87) = 29.5◦. With such a small angle between the
axes and a large correlation between the factors, it is clear that a single factor
would better represent the variables. This is also borne out by the eigenvalues
of the correlation matrix: 3.695, .255, .033, and .017. The first accounts for
92% of the variance and the second for only 6%.

13.9 Rootstock data of Table 6.2:

Principal Varimax
Component Rotated
Loadings Loadings Communalities,

f1 f2 f1 f2 ĥ2
i

Variables
Trunk 4 years .787 .575 .167 .960 .949
Extension 4 years .849 .467 .287 .925 .939
Trunk 15 years .875 −.455 .946 .280 .973
Weight 15 years .824 −.547 .973 .179 .978

Variance 2.785 1.054 1.951 1.888 3.839

Proportion .696 .264 .488 .472 .960

 10.1002/0471271357.app2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/0471271357.app2 by Iraq H

inari N
PL

, W
iley O

nline L
ibrary on [22/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



650 ANSWERS AND HINTS TO PROBLEMS

The rotation was successful in producing variables with a complexity of 1,
that is, partitioning the variables into two groups, each with two variables.

13.10 (a) Fish data of Table 6.17:

Principal Varimax
Component Rotated
Loadings Loadings Communalities,

f1 f2 f1 f2 ĥ2
i

Variables
y1 .830 −.403 .874 .294 .851
y2 .783 −.504 .911 .189 .866
y3 .803 .432 .270 .871 .831
y4 .769 .497 .200 .893 .838

Variance 2.537 .850 1.709 1.678 3.386

Proportion .634 .213 .427 .420 .847

(b) The loadings for y1 and y2 are similar. In R we see some indication of the
reason for this; y1 and y2 are more highly correlated than any other pair of
variables, and their correlations with y3 and y4 are similar:

R =




1.00 .71 .51 .40
.71 1.00 .38 .40
.51 .38 1.00 .67
.40 .40 .67 1.00


 .

(c) By (13.58), the factor score coefficient matrix is

B̂1 = R−1�̂ =




.566 −.109

.636 −.207
−.130 .584
−.194 .630


 ,

where �̂ is the matrix of rotated factor loadings given in part (a). The
factor scores are given by (13.59) as follows:
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ANSWERS AND HINTS TO PROBLEMS 651

Method 1 Method 2 Method 3

f̂1 f̂2 f̂1 f̂2 f̂1 f̂2

.544 1.151 −.254 .309 −1.156 2.104
1.250 −.254 −.309 −1.534 −.321 .878
1.017 1.120 −1.865 −1.558 −.671 .947
−.147 −1.583 −.999 −.690 .067 1.130

.219 −.103 .520 −.343 −1.610 −.458
1.007 .679 .919 −.111 .557 .491
1.413 −.186 −.443 −.018 −.454 1.157
−.666 −2.279 −.265 .676 −.961 .063
1.057 −1.870 1.449 −.295 −.230 1.721
.388 −.440 1.371 .295 −1.309 .054

1.328 −.298 1.260 −.027 −1.766 −.111
.694 −.033 −.000 −1.452 −1.636 −.048

(d) A one-way MANOVA on the two factor scores comparing the three meth-
ods yielded the following values for E and H:

E =
(

21.8606 10.3073
10.3073 25.2081

)
, H =

(
13.1394 −10.3073

−10.3073 9.7919

)
.

The four MANOVA test statistics are � = .3631, V (s) = .6552, U (s) =
1.7035, and θ = .6259. All are highly significant.

13.11 (a) For the flea data of Table 5.5, the eigenvalues of R are 2.273, 1.081, .450,
and .196. There is a noticeable gap between 1.081 and .450, and the first
two factors account for 83.9% of the variance. Thus m = 2 factors seem
to be indicated for this set of data.

(b)

Principal Varimax Orthoblique
Component Rotated Pattern
Loadings Loadings Communalities, Loadings

f1 f2 f1 f2 ĥ2
i f1 f2

Variables
y1 −.038 .989 −.025 .990 .980 −.003 .990
y2 .889 .269 .892 .256 .862 .898 .253
y3 .893 −.157 .891 −.170 .823 .887 −.173
y4 .827 −.073 .823 −.084 .689 .824 −.087

Variance 2.273 1.081 2.273 1.081 3.354

Proportion .568 .270 .568 .270 .839

(The variance explained by the varimax rotated factors remains the
same as for the initial factors when rounded to three decimal places.)
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652 ANSWERS AND HINTS TO PROBLEMS

(c) In this case, neither of the rotations changes the initial loadings apprecia-
bly. The reason for this unusual outcome can be seen in the correlation
matrix:

R =




1.00 .18 −.17 −.07
.18 1.00 .73 .59

−.17 .73 1.00 .59
−.07 .59 .59 1.00


 .

There are clearly two clusters of variables: {y1} and {y2, y3, y4}. We would
expect two factors corresponding to these groupings to emerge after rota-
tion. That the same pattern surfaces in the initial factor loadings (based
on eigenvectors) is due to their affiliation with principal components. As
noted in Section 12.8.1, if a variable has small correlations with all other
variables, the variable itself will essentially constitute a principal compo-
nent. In this case, y1 has this property and makes up most of the second
principal component. The first component is comprised of the other three
variables.

13.12 (a) For the engineer data of Table 5.6, the number of eigenvalues greater than
1 is three, but the three account for only 70% of the variance. It requires
four eigenvalues to reach 84%. The scree plot also indicates four eigenval-
ues.

(b)

Principal Varimax
Component Loadings Rotated Loadings Communalities,

f1 f2 f3 f1 f2 f3 ĥ2
i

Variables
y1 .536 .461 .478 −.063 .834 .170 .729
y2 −.129 .870 −.182 −.357 .100 .818 .806
y3 .514 −.254 −.448 .724 −.026 .068 .529
y4 .724 −.366 −.110 .739 .295 −.193 .670
y5 −.416 −.414 .649 −.484 −.013 −.729 .766
y6 .715 .124 .420 .239 .800 −.069 .702

Variance 1.775 1.354 1.073 1.493 1.435 1.275 4.202

Proportion .296 .226 .179 .249 .239 .212 .700

(c) The initial communality estimates for the six variables are given by
(13.36) as .215, .225, .113, .255, .161, .248. With these substituted for the
diagonal of R, the eigenvalues of R − �̂ are

Eigenvalue .994 .569 .255 −.025 −.237 −.339
Proportion .816 .468 .209 −.020 −.195 −.278
Cumulative .816 1.284 1.493 1.473 1.278 1.000
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ANSWERS AND HINTS TO PROBLEMS 653

The principal factor loadings and varimax rotation are as follows:

Principal Varimax
Component Loadings Rotated Loadings Communalities,

f1 f2 f3 f1 f2 f3 ĥ2
i

Variables
y1 .403 .312 .227 .030 .536 .151 .311
y2 −.106 .569 −.100 −.288 .083 .505 .345
y3 .343 −.139 −.197 .413 .060 .037 .176
y4 .559 −.247 −.090 .564 .233 −.094 .381
y5 −.286 −.246 .328 −.262 −.088 −.417 .250
y6 .556 .089 .197 .258 .537 .003 .356

(d) The pattern of loadings is similar in parts (b) and (c), and the interpretation
of the three factors would be the same.

13.13 Probe word data of Table 3.5:

Principal Varimax Orthoblique
Component Rotated Pattern
Loadings Loadings Communalities, Loadings

f1 f2 f1 f2 ĥ2
i f1 f2

Variables
y1 .817 −.157 .732 .395 .692 .737 .131
y2 .838 −.336 .861 .271 .815 .963 −.092
y3 .874 .288 .494 .776 .847 .248 .734
y4 .838 −.308 .844 .292 .798 .931 −.057
y5 .762 .547 .244 .905 .879 −.134 1.023

Variance 3.416 .614 2.294 1.736 4.031

Proportion .683 .123 .459 .347 .806

The loadings for y2 are similar to those for y4 in all three sets of loadings.
The reason for this can be seen in the correlation matrix

R =




1.00 .61 .76 .58 .41
.61 1.00 .55 .75 .55
.76 .55 1.00 .61 .69
.58 .75 .61 1.00 .52
.41 .55 .69 .52 1.00


 .

The correlations of y2 with y1, y3, and y5 are very similar to the correlations
of y4 with y1, y3, and y5.
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654 ANSWERS AND HINTS TO PROBLEMS

CHAPTER 14

14.1 Adding and subtracting x and y in (14.2) (squared), we obtain

d2(x, y) =
p∑

j=1

[(x j − x)− (y j − y)+ (x − y)]2

=
p∑

j=1

(x j − x)2 +
p∑

j=1

(yi − y)2 + p(x − y)2

−2
p∑

j=1

(x j − x)(y j − y).

The other two terms vanish because
∑

j (x j − x) = ∑
j (y j − y) = 0.

Substituting v2
x = ∑p

j=1(x j − x)2 and v2
y = ∑p

j=1(y j − y)2 and adding and

subtracting −2
√
v2

xv
2
y = −2vxvy , we obtain

d2(x, y) = v2
x + v2

y − 2
√
v2

xv
2
y + p(x − y)2 + 2vxvy

−2
√
v2

xv
2
y

∑p
j=1(x j − x)(y j − y)√

v2
xv

2
y

= (vx − vy)
2 + p(x − y)2 + 2vxvy(1 − rxy).

14.2 (a) Since yAB =∑n AB
i=1 yi/n AB , we have by (14.16),

SSEAB =
n AB∑
i=1

(yi − yAB)
′(yi − yAB)

=
n AB∑
i=1

y′
i yi −

n AB∑
i=1

y′
i yAB −

n AB∑
i=1

y′
AByi

+
n AB∑
i=1

y′
AByAB

=
n AB∑
i=1

y′
i yi − n ABy′

AByAB − n ABy′
AByAB

+n ABy′
AByAB

=
n AB∑
i=1

y′
i yi − n ABy′

AByAB .
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ANSWERS AND HINTS TO PROBLEMS 655

Similarly, SSEA = ∑n A
i=1 y′

i yi − n Ay′
AyA and SSEB = ∑nB

i=1 y′
i yi −

nBy′
ByB . Now

n ABy′
AByAB = (n A + nB)

(n AyA + nByB)
′

n A + nB

(n AyA + nByB)

n A + nB

= n2
Ay′

AyA + n AnBy′
AyB + n AnBy′

AyB + n2
By′

ByB

n A + nB
.

Thus

SSEAB − (SSEA + SSEB) =
n AB∑
i=1

y′
i yi −

n A∑
i=1

y′
i yi −

nB∑
i=1

y′
i yi

+n Ay′
AyA + nBy′

ByB − n ABy′
AByAB

= n Ay′
AyA + nBy′

ByB − n ABy′
AByAB .

Show that when the right side of (14.16) is expanded, it reduces to this
same expression [see Problem 14.3(b)].

(b) Multiplying out the right side of (14.16), we have

n Ay′
AyA − n Ay′

AyAB − n Ay′
AByA + n Ay′

AByAB + nBy′
ByB

− nBy′
ByAB − nBy′

AByB + nBy′
AByAB

= n Ay′
AyA + nBy′

ByB − 2(n Ay′
A + nBy′

B)yAB + (n A + nB)y′
AByAB

= n Ay′
AyA + nBy′

ByB − 2(n A + nB)y′
AByAB + (n A + nB)y′

AByAB

= n Ay′
AyA + nBy′

ByB − (n A + nB)y′
AByAB .

Substitute yAB = (n AyA + nByB)/(n A + nB).
14.3 (a) Complete linkage. From Table 14.2, we have

D(C, AB) = 1
2 D(C, A)+ 1

2 D(C, B)+ 1
2 |D(C, A)− D(C, B)| (1)

If D(C, A) > D(C, B), then |D(C, A) − D(C, B)| = D(C, A) −
D(C, B), and equation (1) becomes D(C, AB) = D(C, A). If D(C, A) >
D(C, B), then |D(C, A)− D(C, B)| = D(C, B)− D(C, A) and equation
(1) becomes D(C, AB) = D(C, B). Thus equation (1) can be written as
D(C, AB) = max[D(C, A), D(C, B)], which is equivalent to (14.9), the
definition of distance for the complete linkage method.

(b) Average linkage. From Table 14.2, we have

D(C, AB) = n A

n A + nB
D(C, A)+ nB

n A + nB
D(C, B). (2)

 10.1002/0471271357.app2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/0471271357.app2 by Iraq H

inari N
PL

, W
iley O

nline L
ibrary on [22/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



656 ANSWERS AND HINTS TO PROBLEMS

By (14.10) equation (2) can be written as

D(C, AB) = n A

n A + nB
· 1

nC n A

nC∑
i=1

n A∑
j=1

d(yi , y j )

+ nB

n A + nB
· 1

nC nB

nC∑
i=1

nB∑
j=1

d(yi , y j )

= 1

nC(n A + nB)

nC∑
i=1

[
n A∑
j=1

d(yi , y j )+
nB∑
j=1

d(yi , y j )

]

= 1

nC n AB

nC∑
i=1

n AB∑
j=1

d(yi , y j ),

which, by (14.10), is the definition of distance for the average linkage
method.

(c) Substitute yAB = (n AyA + nByB)/(n A + nB) in the left side of (14.40) in
the statement of Problem 14.3(c) and multiply to obtain

y′
C yC − 2n Ay′

AyC

n A + nB
+ 2n AnBy′

AyB

(n A + nB)2
− 2nBy′

ByC

n A + nB

+ n2
Ay′

AyA

(n A + nB)2
+ n2

By′
ByB

(n A + nB)2
.

Similarly, multiply on the right side of (14.40) to obtain the same result.
(d) Using n A = nB in yAB = (n AyA+nByB)/(n A+nB) in (14.12), we obtain

mAB = 1
2 (yA + yB) in (14.13). Then (14.40) [see part (c)] becomes

(yC − mAB)
′(yC − mAB) = 1

2 (yC − yA)
′(yC − yA)+ 1

2 (yC − yB)
′(yC − yB)

− 1
4 (yA − yB)

′(yA − yB),

which matches the parameter values for the median method in Table 14.2.
(e) By (14.19),

(yA − yB)
′(yA − yB) = n A + nB

n AnB
IAB,

and we have analogous expressions for (yC − yAB)
′(yC − yAB), (yC −

yA)
′(yC −yA), and (yC −yB)

′(yC −yB). Then (14.40) in part (c) becomes
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ANSWERS AND HINTS TO PROBLEMS 657

nC + n AB

nC n AB
IC(AB) =

(
n A

n A + nB

)(
nC + n A

nC n A

)
IC A

+
(

nB

n A + nB

)(
nC + nB

nC nB

)
IC B

−
[

n AnB

(n A + nB)2

](
n A + nB

n AnB

)
IAB

= n A + nC

nC n AB
IAC + nB + nC

nC n AB
IBC − 1

n AB
IAB .

Solve for IC(AB).
14.4 If γ = 0, then (14.20) becomes

D(C, AB) = αA D(C, A)+ αB D(C, B)+ βD(A, B). (1)

By (14.25), we have D(A,C) > D(A, B) and D(B,C) > D(A, B). Thus,
replacing D(C, A) and D(C, B) in equation (1) by D(A, B), we obtain

D(C, AB) > αA D(A, B)+ αB D(A, B)+ βD(A, B),

which is equivalent to (14.26).

14.5 (a) v.. = 1

gn

g∑
i=1

n∑
j=1

vi j = 1

gn

g∑
i=1

n∑
j=1

(Ayi j + b) = 1

gn

(
A
∑

i j

yi j + gnb

)

= A
(

1

gn

∑
i j yi j

)
+ b = Ay.. + b

Show similarly that vi. = Ayi. + b. Then by (6.9), we have

Hv = n
g∑

i=1

(vi. − v..)(vi. − v..)′

= n
∑

i

[Ayi. + b − (Ay.. + b)][Ayi. + b − (Ay.. + b)]′

= n
∑

i

(Ayi. − Ay..)(Ayi. − Ay..)
′

= n
∑

i

A(yi. − y..)(yi. − y..)
′A′ [by (2.27)]

= nA

[∑
i

(yi. − y..)(yi. − y..)
′
]

A′ [by (2.45)]

= AHyA′.

Show similarly that Ev = AEyA′.
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658 ANSWERS AND HINTS TO PROBLEMS

(b) tr(Ev) = tr(AEyA′) = tr(A′AEy) 
= tr(Ey)

(c) |Ev| = |AEyA′| = |A||Ey ||A′| = |A|2|Ey | = c|Ey |, where c > 0. Thus
minimizing |Ev| is equivalent to minimizing |Ey |.

(d) tr(E−1
v Hv) = tr[(AEyA′)−1(AHyA′)]

= tr[(A′)−1E−1
y A−1AHyA′]

= tr[(A′)−1E−1
y HyA′]

= tr[A′(A′)−1E−1
y Hy]

= tr(E−1
y Hy)

14.6 There are p parameters in each �i , 1
2 p(p + 1) unique parameters in each �i ,

and g − 1 unique parameters αi . Thus the total number is

gp + g
[ 1

2 p(p + 1)
]+ g − 1 = g

[
p + 1

2 p(p + 1)+ 1
]− 1

= 1
2 g[2p + p2 + p + 2] − 1

= 1
2 g(3p + p2 + 2)− 1

= 1
2 g(p + 1)(p + 2)− 1.

14.7 (a) The two-cluster solution from single linkage puts boy No. 20 in one cluster
and the other 19 boys in the other cluster.
(b), (c), and (d). Based on the change in distance, average linkage and the
other cluster solutions in parts (c) and (d) clearly indicate two clusters.
These solutions generally agree and also correspond to a division into two
groups seen in the first principal component in Figure 12.5. The separation
of the three apparent outliers from the other 17 observations is less pro-
nounced in the cluster analyses than in Figure 12.5. Note that the scale of
the second component in Figure 12.5 is much larger than that of the first
component, so the separation of points 9, 12, and 20 from the rest is not
as large as it appears in the figure. Of the methods in parts (b), (c), and
(d), only flexible beta with β = −.50 and −.75 place points 9, 12, and 20
together in one cluster. All others place 9 and 12 in one of the clusters and
20 in the other.

14.8 (a) The distance between centroids of the two clusters is
√

2994.9 = 54.7.
(b) From the dendrogram produced by the average linkage method, the largest

change in distance corresponds to a two-cluster solution.
(c) The discriminant function completely separates the two clusters, with no

overlap.
14.9 (a) Observation 22 seems to be an outlier, because it forms its own cluster in

both the single linkage and average linkage methods. The cluster consist-
ing of observations 2, 21, 24, 26, and 30 is the same in all six methods.

(b) The discriminant function completely separates the two clusters, with no
overlap.
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ANSWERS AND HINTS TO PROBLEMS 659

14.10 (a) The following five clusters were found using as seeds the five observations
that are mutually farthest apart.

Cluster 1 2 3 4 5

Observation(s) 9, 15, 16, 1, 2, 3, 6, 7, 8, 10, 11, 14
18, 19 4, 5, 17 20 12, 13

In the plot of the first two discriminant functions, observation 14 is
relatively far removed from the rest. Clusters 1, 2, and 3 are somewhat
closer to each other.

(b) The following five clusters were found using as seeds the first five obser-
vations.

Cluster 1 2 3 4 5

Observation(s) 1, 3, 4 2 5, 17, 6, 7, 8, 9, 10, 11
18, 19 15, 16, 20 12, 13, 14

The plot of the first two discriminant functions shows a pattern different
from that in part (a).

(c) The following five clusters were found using as seeds the centroids of the
five-cluster solution resulting from Ward’s method.

Cluster 1 2 3 4 5

Observation(s) 6, 7, 8, 15, 5, 9, 17, 10, 11, 1, 2, 14
16, 20 18, 19 12, 13 3, 4

The plot of the first two discriminant functions shows a pattern similar
to that found in part (a), with observation 14 isolated.The dendrogram
shows that Ward’s method gives the same five-cluster solution as the k-
means result.

(d) The following five clusters were found using the k-means method with
seeds equal to the centroids of the five clusters from average linkage.

Cluster 1 2 3 4 5

Observation(s) 6, 7, 8, 15, 1, 2, 3, 4, 5, 10, 11, 9 14
16, 20 17, 18, 19 12, 13

The plot of the first two discriminant functions shows a pattern some-
what similar to that in part (a).
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660 ANSWERS AND HINTS TO PROBLEMS

In the dendrogram for average linkage, observations 9 and 14 are iso-
lated clusters in the five-cluster solution, which is identical to the five-
cluster solution using k-means clustering with these seeds.

(e) Observation 14 does not appear as an outlier in the plot of the first two
principal compoments, but it does show up as an outlier in the plot of
the second and third components. The solutions found in parts (a) and (c)
seem to agree most with the principal component plots. This suggests that
a different number of initial cluster seeds be used.

(f) The two clustering solutions are identical. The results are given next.

Cluster 1 2 3

Observations 6, 7, 8, 15, 9, 10, 11, 12, 1, 2, 3, 4, 5,
16, 20 13, 14 17, 18, 19

(g) The clustering solution is identical to that found in part (f), which indicates
that the three-cluster solution is appropriate.

14.11 The number of clusters obtained from the indicated combinations of k and r
are shown in the following table. Note that for each pair of values of k and
r , the value of r was increased if necessary for each point until k points were
included in the sphere.

k/r .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0

2 10 10 10 10 8 6 4 3 3 2
3 5 5 5 5 5 3 2 2 2 2
4 2 2 2 2 2 2 2 2 2 2
5 1 1 1 1 1 1 1 1 1 1

The maximum value of k that yields a two-cluster solution is 4.
14.12 (a) The number of clusters obtained from the initial combinations of k and r

are shown in the following table. The value of r was variable, as noted in
Problem 14.11.

k/r .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0

2 3 3 3 3 3 3 3 3 3 3
3 2 2 2 2 2 2 2 2 2 2
4 1 1 1 1 1 1 1 1 1 1

(b) The plot of the first two discriminant functions for k = 2 and r = 1 shows
the three clusters to be well separated.

(c) The plot of the first two principal components shows the same groupings
as in the plot in part (b).
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ANSWERS AND HINTS TO PROBLEMS 661

(d) The plot of the discriminant function shows wide separation of the two
clusters, which do not overlap. The three-cluster solution found in part (b)
is given next

Cluster 1 Cluster 2 Cluster 3

Harpers Rosemaund Cambridge
Morley Terrington Cockle Park
Myerscough Headley
Sparsholt Seale-Hayne
Sutton Bonington
Wye

The two-cluster solution found in part (d) merges clusters 2 and 3 of
part (b).

CHAPTER 15

15.1

B =
(

I − 1

n
J
)

A
(

I − 1

n
J
)

= A − 1

n
AJ − 1

n
JA + 1

n2
JAJ (1)

By (2.38),

1

n
Aj = 1

n



∑

j a1 j∑
j a2 j
...∑
j anj


 =




a1.
a2.
...

an.


 . (2)

Hence,

1

n
AJ = 1

n
A(j, j, . . . , j) =

(
1

n
Aj, . . . ,

1

n
Aj
)

=




a1. · · · a1.
a2. · · · a2.
...

...

an. · · · an.


 .

Show that
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662 ANSWERS AND HINTS TO PROBLEMS

1

n
JA =




a.1 a.2 · · · a.n
a.1 a.2 · · · a.n
...

...
...

a.1 a.2 · · · a.n


 .

Using equation (2), we obtain

1

n2
j′Aj = 1

n2
(1, 1, . . . , 1)



∑

j a1 j∑
j a2 j
...∑
j anj


 = 1

n2

∑
i j

ai j = a...

By (3.63),

1

n2
JAJ = 1

n2




j′Aj · · · j′Aj
...

...

j′Aj · · · j′Aj


 =




a.. · · · a..
...

...

a.. · · · a..


 .

Hence the i j th element of equation (1) is bi j = ai j − ai. − a. j + a...
15.2 (a) (Seber 1984, pp. 236–237) The elements of B = (bi j ) are defined as bi j =

ai j − ai. − a. j + a.., where ai j = − 1
2δ

2
i j . Thus

−2ai j = δ2
i j = (zi − z j )

′(zi − z j )

= z′
i zi + z′

j z j − 2z′
i z j .

Then

−2ai. = 1

n

n∑
j=1

(−2ai j ) = 1

n

∑
j

(z′
i zi + z′

j z j − 2z′
i z j )

= z′
i zi + 1

n

∑
j

z′
j z j − 2

n
z′

i

∑
j

z j

= z′
i zi + 1

n

∑
j

z′
j z j − 2z′

i z.

Similarly, show that

−2a. j = z′
j z j + 1

n

∑
i

z′
i zi − 2z′z j ,

−2a.. = 2

n

∑
i

z′
i zi − 2z′z.
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ANSWERS AND HINTS TO PROBLEMS 663

Solve for ai j , ai., a. j , and a.. and substitute into bi j = ai j − ai.− a. j + a..
to obtain bi j = z′

i z j − z′
i z − z′z j + z′z, which can be factored as bi j =

(zi − z)′(z j − z). Hence

B =


(z1 − z)′(z1 − z) · · · (z1 − z)′(zn − z)

...
...

(zn − z)′(z1 − z) · · · (zn − z)′(zn − z)




=


(z1 − z)′

...

(zn − z)′


(z1 − z, . . . , zn − z)

= ZcZ′
c [see (10.13)].

Thus B is positive semidefinite (see Section 2.7).
(b) If B is positive semidefinite of rank q, then by (2.109) and Section 2.11.4,

B can be expressed in the form B = V�V′, where V = (v1, v2, . . . , vn)

is an orthogonal matrix of eigenvectors of B, and � is a diagonal matrix
of eigenvalues, q of which are positive, with the rest equal to zero. Letting
�1 be the q × q upper-left-hand block of � with positive eigenvalues
and V1 = (v1, v2, . . . , vq) be the n × q matrix with the corresponding
eigenvectors, we can write B = V�V′ as

B = (V1,V2)

(
�1 O
O O

)(
V′

1
V′

2

)

= V1�1V′
1 = V1�

1/2
1 �

1/2
1 V′

1

= ZZ′, (1)

where the n × q matrix Z is

Z = V1�
1/2
1 = (

√
λ1v1,

√
λ2v2, . . . ,

√
λqvq)

=




z′
1

z′
2
...

z′
n


 .

To show that (zi − z j )
′(zi − z j ) is equal to δ2

i j , we can proceed as follows:

(zi − z j )
′(zi − z j ) = z′

i zi + z′
j z j − 2z′

i z j . (2)

By equation (1), we have
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664 ANSWERS AND HINTS TO PROBLEMS

B = ZZ′ =




z′
1

z′
2
...

z′
n


(z1, z2, . . . , zn)

=




z′
1z1 z′

1z2 · · · z′
1zn

z′
2z1 z′

2z2 · · · z′
2zn

...
...

...

z′
nz1 z′

nz2 · · · z′
nzn


 .

Hence equation (2) becomes

(zi − z j )
′(zi − z j ) = z′

i zi + z′
j z j − 2z′

i z j

= bii + b j j − 2bi j . (3)

Show that substituting bi j = ai j −ai.−a. j +a.. into equation (3) leads to

(zi − z j )
′(zi − z j ) = aii + a j j − 2ai j + ai. − a.i + a. j − a j..

Show that the symmetry of A implies ai. = a.i and a. j = a j.. Hence,

(zi − z j )
′(zi − z j ) = aii + a j j − 2ai j = −2ai j = δ2

i j ,

since aii = − 1
2δ

2
i i = 0 and −2ai j = δ2

i j .

15.3 (a) r =
b∑

j=1

p. j c j =
b∑

j=1

p. j

(
p1 j

p. j
,

p2 j

p. j
, . . . ,

paj

p. j

)′

=
b∑

j=1

(p1 j , p2 j , . . . , paj )
′ [by (2.61)]

=(∑ j p1 j ,
∑

j p2 j , . . . ,
∑

j paj )
′

=(p1., p2., . . . , pa.)
′

(b) c′ = =
a∑

i=1

pi.r′
i =

a∑
i=1

pi

(
pi1

pi.
,

pi2

pi.
, . . . ,

pib

pi.

)

=
a∑

i=1

(pi1, pi2, . . . , pib) [by (2.61)]

= (
∑

i pi1,
∑

i pi2, . . . ,
∑

i pib)

= (p.1, p.2, . . . , p.b)

15.4 j′r =∑a
i=1 pi. =∑a

i=1
∑b

j=1 pi j =∑i j ni j/n = n/n = 1,

c′j =∑b
j=1 p. j =∑ j n. j/n =∑ j

∑
i ni j/n = n/n
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ANSWERS AND HINTS TO PROBLEMS 665

15.5 By (15.8), (15.9), and (15.10), pi j = ni j/n, pi. = ni./n, and p. j = n. j/n.
Substituting these into (15.25), we obtain

χ2 =
∑

i j

n
(

ni j
n − ni.n. j

n2

)2

ni.n. j
n2

=
∑

i j

n
[

1
n (ni j − ni.n. j

n )
]2

ni.n. j
n2

=
∑

i j

n
n2 (ni j − ni.n. j

n )2

ni.n. j
n2

=
∑

i j

(ni j − ni.n. j
n )2

ni.n. j
n

.

15.6 (a) Multiplying numerator and denominator of (15.25) by pi., we obtain

χ2 =
∑

i

n
∑

j

pi.

p2
i. p. j

(pi j − pi. p. j )
2

=
∑

i

n pi.

∑
j

1

p. j

[
1

pi.
(pi j − pi. p. j )

]2

=
∑

i

npi.

∑
j

(
pi j

pi.
− p. j

)2

/p. j .

15.7 (a) By (15.29), (15.10), (15.12), and (15.18), we obtain

χ2 =
∑

i

npi.(ri − c)′D−1
c (ri − c)

=
∑

i

npi.

(
pi1

pi.
− p.1, . . . ,

pib

pi.
− p.b

)
p.1 · · · 0
...

...

0 · · · p.b




−1


pi1
pi.

− p.1
...

pib
pi.

− p.b




=
∑

i

n pi.

( pi1
pi.

− p.1

p.1
, . . . ,

pib
pi.

− p.b

p.b

)
pi1
pi.

− p.1
...

pib
pi.

− p.b


 .

15.8 (a) By (15.9), r = Pj. Then D−1
r r = D−1

r Pj = Rj by (15.15). By (15.13),
r′

i j = 1, and therefore Rj = j. Now

D−1
r (P − rc′) = D−1

r P − D−1
r rc′ = R − Rjc′ = R − jc′.

15.9 By (15.49), z′
i = y′

i A (ignoring the centering on yi ). Thus the squared
Euclidean distance can be written as

(zi − zk)
′(zi − zk) = (z′

i − z′
k)(zi − zk)

= (y′
i A − y′

kA)(A′yi − A′yk)
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666 ANSWERS AND HINTS TO PROBLEMS

= (y′
i − y′

k)AA′(yi − yk)

= (yi − yk)
′(yi − yk),

since A is orthogonal.
15.10 (a) From YcV = U� in (15.55), we have YcV�−1 = U. Then

UU′ = YcV�−1�−1V′Y′
c

= YcV(�−1)2V′Y′
c. (1)

Since (�−1)2 = diag(1/λ2
1, 1/λ2

2, . . . , 1/λ2
p), where the λ2

i ’s are eigen-

values of Y′
cYc, the matrix (�−1)2 contains eigenvalues of (Y′

cYc)
−1 =

[(n − 1)S]−1 = S−1/(n − 1) [see (2.115) and (2.116)]. The matrix V
contains eigenvectors of Y′

cYc and thereby of (Y′
cYc)

−1 (see Section
2.11.9). Hence we recognize V(�−1)2V′ as the spectral decomposition of
(Y′

cYc)
−1 [see (2.109), (2.115), and (2.116)]. Therefore, equation (1) can

be written as

UU′ = YcV(�−1)2V′Y′
c = Yc(Y′

cYc)
−1Y′

c

= YcS−1Y′
c/(n − 1).

(b) If H = V�, then HH′ = V��V′ = V�2V′. The diagonal matrix �2

contains the eigenvalues λ2
i of the matrix Y′

cYc. Thus by (2.115), V�2V′
is the spectral decomposition of Y′

cYc, and

HH′ = V�2V′ = Y′
cYc = (n − 1)S.

15.11 By (15.64), (3.63), and (3.64) (ignoring n − 1 and assuming the yi ’s are cen-
tered),

(ui − uk)
′(ui − uk) = u′

i ui + u′
kuk − 2u′

i uk

= y′
i S

−1yi + y′
kS−1yk − 2y′

i S
−1yk

= (yi − yk)
′S−1(yi − yk).

15.12 (a) The first ten rows and columns of the matrix B are as follows.




129849 −26801 −88750 −53847 −59118 43583 −73877 81571 112101 80909
−26801 2310 17029 11125 14394 −11076 18149 −18662 −21852 −16306
−88750 17029 65973 32378 31044 −31085 68156 −56671 −79481 −54135
−53847 11125 32378 27683 31808 −18550 30003 −34154 −46882 −32096
−59118 14394 31044 31808 38141 −19161 27269 −37147 −51673 −34687

45383 −11076 −31085 −18550 −19161 14741 −33620 27054 45347 29211
−73877 18149 68156 30003 27269 −33620 76423 −45782 −86804 −58650

81571 −18662 −56671 −34154 −37147 27054 −45782 49169 75557 50169
112101 −21852 −79481 −46882 −51673 45347 −86804 75557 119634 81258

80909 −16306 −54135 −32096 −34687 29211 −58650 50169 81258 53286



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ANSWERS AND HINTS TO PROBLEMS 667

(b) The first two columns of the matrix Z are given by

City z1 z2 City z1 z2

A 354.1 −10.2 M 391.6 47.5
B −77.1 25.0 N 21.0 −44.7
C −238.2 −75.7 O 9.8 30.9
D −154.9 65.9 P −173.8 −78.5
E −163.2 72.2 Q 6.3 17.1
F 126.0 24.9 R 117.0 −48.0
G −228.8 −149.4 S −102.3 −170.2
H 223.9 1.5 T −53.2 −27.3
I 337.7 44.8 U −315.2 190.9
J 226.7 34.7 V −255.7 140.2
K −33.4 22.3 W −19.3 −34.3
L 1.1 −79.4

(c) The metric multidimensional scaling plot shows the relative positions of
the cities.

15.13 (a) The multidimensional scaling plot shows two clusters, one for positive
values of the first dimension and one for negative values. The two clusters
can be interpreted as comfort (positive values) and discomfort (negative
values). Hence, the axis of the first dimension can be interpreted as the
level of comfort.

(b) The dendrogram for Ward’s method clearly shows two clusters, the same
as in part (a).

15.14 (a) The initial configuration of points will vary. One example is as follows:

y1 y2 y3 y4 y5 y6

1.458 .769 −1.350 .456 −1.610 1.827
−.598 −1.069 −2.667 .458 .416 1.094

−1.777 −.409 .369 .655 −.058 1.177
.071 .361 1.157 −.154 .343 −.417

−.060 1.361 .743 1.436 .332 −.894
−.757 −.432 −.545 .233 .646 −.102

−1.971 −.492 −.461 .078 1.441 .039
−1.560 −.173 .657 -.528 1.001 1.030
−.597 .814 −.898 .283 −.355 −1.115
1.449 -.942 .867 −.922 .833 1.196

−1.809 −.093 −1.762 −.533 −1.136 −.226
1.067 .199 .978 .884 −1.060 −.800

(b) Answers will vary. For the seeds given in part (a), STRESS = .0266.
(c) Answers will vary. The plot of STRESS versus k for one solution showed

that two dimensions should be retained. The nonmetric MDS plot showed
that Franco, Mussolini, and Hitler were close together, as well as Churchill
and DeGaulle, and Eisenhower and Truman.

(d) Answers will vary. One solution gave results similar to part (c).
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668 ANSWERS AND HINTS TO PROBLEMS

(e) Answers will vary. One solution showed three dimensions. A plot of two
dimensions showed Mussolini and Franco together in the center with the
others forming a circle around them of almost equally spaced points.

(f) Answers will vary. One solution was similar to that in part (c).
15.15 (a) The correspondence matrix P is found by dividing each element of Table

15.16 by n = 1281 to obtain the following:

Death Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Total
Birth

Jan. .007 .011 .009 .011 .007 .009 .008 .012 .007 .009 .009 .010 .108
Feb. .010 .005 .005 .006 .007 .004 .003 .004 .005 .009 .001 .010 .069
Mar. .009 .011 .007 .005 .013 .008 .007 .008 .007 .002 .010 .007 .094
Apr. .005 .009 .008 .005 .007 .009 .003 .009 .003 .007 .006 .009 .080
May .006 .005 .009 .005 .003 .009 .007 .007 .009 .005 .007 .003 .075
Jun. .011 .004 .004 .005 .010 .004 .005 .003 .006 .007 .005 .004 .069
Jul. .009 .008 .010 .003 .004 .009 .005 .005 .003 .008 .003 .006 .073
Aug. .005 .005 .009 .010 .008 .007 .002 .006 .006 .006 .006 .009 .081
Sep. .005 .009 .009 .008 .008 .009 .003 .006 .009 .005 .006 .005 .083
Oct. .012 .006 .009 .007 .005 .008 .009 .006 .007 .006 .005 .005 .087
Nov. .005 .007 .012 .008 .009 .008 .005 .008 .005 .008 .007 .005 .087
Dec. .005 .014 .007 .009 .011 .006 .007 .007 .008 .005 .008 .006 .092

Total .092 .094 .096 .084 .092 .088 .066 .080 .077 .075 .074 .081 1.000

(b) The R matrix is given by

R =




.07 .11 .12 .11 .07 .04 .11 .10 .09 .08 .09 .04

.13 .08 .12 .07 .07 .03 .09 .11 .10 .08 .08 .08

.09 .08 .07 .15 .05 .08 .07 .08 .12 .08 .05 .08

.09 .06 .15 .08 .15 .04 .06 .07 .10 .01 .12 .08

.10 .11 .09 .10 .07 .07 .08 .09 .07 .08 .08 .07

.04 .06 .09 .11 .13 .07 .12 .14 .05 .04 .11 .04

.08 .04 .06 .06 .16 .08 .06 .06 .15 .08 .10 .09

.06 .08 .07 .12 .10 .07 .08 .07 .14 .11 .02 .07

.07 .09 .04 .06 .08 .09 .13 .11 .04 .09 .06 .11

.09 .09 .05 .08 .06 .06 .09 .14 .10 .08 .09 .06

.08 .07 .06 .07 .14 .11 .09 .10 .06 .06 .07 .08

.09 .08 .07 .11 .07 .04 .10 .10 .09 .08 .06 .11



,

and the C matrix is given by

C =




.07 .11 .12 .09 .06 .05 .10 .08 .08 .08 .09 .04

.12 .08 .12 .06 .04 .08 .09 .08 .08 .08 .08 .08

.10 .09 .08 .15 .05 .11 .07 .07 .12 .11 .06 .10

.07 .05 .13 .06 .11 .05 .04 .05 .08 .01 .11 .07

.13 .15 .13 .12 .08 .12 .10 .10 .08 .12 .11 .09

.04 .06 .08 .08 .10 .08 .10 .11 .04 .04 .10 .04

.07 .04 .05 .04 .12 .08 .04 .04 .11 .07 .09 .08

.07 .10 .09 .12 .10 .11 .09 .07 .14 .14 .02 .09

.07 .09 .04 .05 .07 .11 .11 .09 .03 .09 .10 .07

.08 .08 .07 .07 .14 .14 .09 .09 .06 .07 .08 .09

.09 .08 .07 .10 .06 .05 .10 .09 .08 .08 .06 .12



.
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ANSWERS AND HINTS TO PROBLEMS 669

(c) The chi-square statistic is 117.7742 with 121 degrees of freedom, which
gives a p-value of .5660. The two variables appear to be independent.

(d) In the correspondence plot, the following associations are seen: {November
births, June deaths}, {March deaths, April deaths, January births}, {September
births, February deaths}, {August births, April births}, {May deaths,
September deaths, May births}.

15.16 (a) The correspondence matrix P is found by dividing each element of Table
15.17 by 8193 to obtain the following:

Part of Country Burglary Fraud Vandalism Total

Oslo area .048 .300 .215 .563
Mid Norway .018 .019 .112 .148
North Norway .085 .040 .164 .289

Total .151 .358 .491 1.000

(b) The R matrix is given by

Part of Country Burglary Fraud Vandalism

Oslo area .086 .533 .381
Mid Norway .121 .126 .753
North Norway .293 .138 .569

and the C matrix is

Part of Country Burglary Fraud Vandalism

Oslo area .320 .837 .437
Mid Norway .119 .052 .228
North Norway .561 .111 .335

(c) The chi-square statistic is 1662.6 with 4 degrees of freedom, which gives
a p-value less than .0001. The two variables are dependent.

(d) In the correspondence plot, North Norway is associated with burglaries,
Oslo is associated with fraud, and Mid Norway is associated with vandal-
ism.
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670 ANSWERS AND HINTS TO PROBLEMS

15.17 (a) The Burt matrix is as follows.

No 5254 0 564 3408 1282 1830 3424 2466 2788 2190 3064 686 2666 1902
Yes 0 165 105 42 18 73 92 37 128 4 125 26 63 76

High dust 564 105 669 0 0 402 267 62 607 218 451 87 359 223
Low dust 3408 42 0 3450 0 1056 2394 1642 1808 1446 2004 480 1684 1286
Medium 1282 18 0 0 1300 445 855 799 501 566 734 145 686 469

dust

Race— 1830 73 402 1056 445 1930 0 932 971 799 1104 108 1658 137
Other

White 3424 92 267 2394 855 0 3516 1571 1945 1431 2085 604 1071 1841

Female 2466 37 62 1642 799 932 1571 2503 0 1373 1130 266 1421 816
Male 2788 128 607 1808 501 971 1945 0 2916 857 2059 446 1308 1162

Nonsmoker 2190 40 218 1446 566 799 1431 1373 857 2230 0 231 1142 857
Smoker 3064 125 451 2004 734 1104 2085 1130 2059 0 3189 481 1587 1121

10–20 686 26 87 480 145 108 604 266 446 231 481 712 0 0
≤ 10 2666 63 359 1684 686 1658 1071 1421 1308 1142 1587 0 2729 0
≥ 20 1902 76 223 1286 469 137 1841 816 1162 857 1121 0 0 1978

(b) The column coordinates for the plot are given by

Variables y1 y2

No −.032 −.087
Yes 1.013 2.761
High dust 1.072 1.648
Low dust −.209 −.107
Medium dust .003 −.564
Race—Other 1.184 −.153
White −.641 .083
Female .007 −.791
Male −.006 .679
Nonsmoker −.036 −.592
Smoker .025 .414
10–20 −.605 .535
≤ 10 .789 −.300
≥ 20 −.871 .221

(c) Some associations seen in the plot are {byssinosis-yes, high dust}, {female,
nonsmoker, medium dust}, {smoker, male}.
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ANSWERS AND HINTS TO PROBLEMS 671

15.18 (a) The two-dimensional coordinates of the observation points and variable
points are

Observation Points

Name Coordinate 1 Coordinate 2

Albania 14.102 −1.322
Austria −5.461 1.548
Belgium −6.077 −1.479
Bulgaria 26.116 3.319
Czech. 3.317 −2.092
Denmark −13.861 1.374
E. Germany −4.902 −8.360
Finland −12.262 11.290
France −6.345 .672
Greece 9.036 3.033
Hungary 10.805 −2.363
Ireland −11.857 5.312
Italy 6.309 −1.314
Netherlands −11.809 2.133
Norway −11.005 −.077
Poland 2.526 2.999
Portugal .784 −16.753
Romania 19.067 2.591
Spain 1.923 −10.483
Sweden −14.842 .726
Switzerland −9.068 4.000
UK −9.311 .698
USSR 10.586 4.355
W. Germany −13.514 −3.353
Yugoslavia 25.742 3.548

Variable Points

Name Coordinate 1 Coordinate 2

R MEAT −.151 .133
W MEAT −.129 .043
EGGS −.067 .021
MILK −.425 .831
FISH −.127 −.292
CEREALS .861 .406
STARCHY −.067 −.076
NUTS .114 −.070
FRUT VEG .020 −.169

In the biplot, the arrows for variables are too short to pass through the
points for observations.
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672 ANSWERS AND HINTS TO PROBLEMS

(b) The two-dimensional coordinates of the observation points and variable
points are given next.

Observation Points

Name Coordinate 1 Coordinate 2

Albania .231 −.049
Austria −.089 .057
Belgium −.100 −.055
Bulgaria .428 .122
Czech. .054 −.077
Denmark −.227 .051
E. Germany −.080 −.308
Finland −.201 .416
France −.104 .025
Greece .148 .112
Hungary .177 −.087
Ireland −.194 .196
Italy .103 −.048
Netherlands −.193 .079
Norway −.180 −.003
Poland .041 .110
Portugal .013 −.617
Romania .312 .095
Spain .032 −.386
Sweden −.243 .027
Switzerland −.149 .147
UK −.153 .026
USSR .173 .160
W. Germany −.221 −.124
Yugoslavia .422 .131

Variable Points

Name Coordinate 1 Coordinate 2

R MEAT −9.196 3.602
W MEAT −7.904 1.179
EGGS −4.106 .569
MILK −25.964 22.552
FISH −7.750 −7.934
CEREALS 52.545 11.025
STARCHY −4.080 −2.064
NUTS 6.953 −1.902
FRUT VEG 1.235 −4.593

In the biplot, the observation points are tightly clustered around the
point (0, 0), making them difficult to distinguish,whereas variable points
are easily discerned. Red meats, white meats, and milk are highly posi-
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ANSWERS AND HINTS TO PROBLEMS 673

tively correlated. These three variables are negatively correlated with nuts
and frut veg.

(c) The two-dimensional coordinates of the observation points and variable
points are as follows.

Observation Points

Name Coordinate 1 Coordinate 2

Albania 1.805 −.254
Austria −.699 .297
Belgium −.778 −.284
Bulgaria 3.343 .637
Czech. .425 −.402
Denmark −1.774 .264
E. Germany −.627 −1.605
Finland −1.570 2.167
France −.812 .129
Greece 1.157 .582
Hungary 1.383 −.454
Ireland −1.518 1.020
Italy .808 −.252
Netherlands −1.511 .409
Norway −1.409 −.015
Poland .323 .576
Portugal .100 −3.216
Romania 2.441 .497
Spain .246 −2.012
Sweden −1.900 .139
Switzerland −1.161 .768
UK −1.192 .134
USSR 1.355 .836
W. Germany −1.730 −.644
Yugoslavia 3.295 .681

Variable Points

Name Coordinate 1 Coordinate 2

R MEAT −1.177 .691
W MEAT −1.012 .226
EGGS −.526 .109
MILK −3.323 4.329
FISH −.992 −1.523
CEREALS 6.726 2.116
STARCHY −.522 −.396
NUTS .890 −.365
FRUIT VEG .158 −.882
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674 ANSWERS AND HINTS TO PROBLEMS

In the biplot, the variable points and observation points are both well
spaced. Finland scored high on the milk variable. Yugoslavia and Bulgaria
scored high on the cereal variable. Spain and Portugal scored highest on
the fish and frut veg variables.

(d) The biplot from part (c) seems better because the scales on the variables
and points are more evenly matched.

15.19 (a) The two-dimensional coordinates of the observation points and variable
points are as follows.

Observation Points

Name Coordinate 1 Coordinate 2

FSM1 −9.535 −4.752
Sister 2.705 .796
FSM2 4.043 −.584
Father 4.392 .614
Teacher −8.708 5.008
MSM 3.409 .701
FSM3 3.694 −1.782

Variable Points

Name Coordinate 1 Coordinate 2

KIND .610 −.054
INTEL .085 .413
HAPPY .407 −.456
LIKE .621 −.039
JUST .264 .785

In the biplot, the arrows for the variables are too short to pass through
the points for observations.

(b) The two-dimensional coordinates of the observation points and variable
points are as follows.

Observation Points

Name Coordinate 1 Coordinate 2

FSM1 −.622 −.655
Sister .176 .110
FSM2 .264 −.080
Father .287 .085
Teacher −.568 .690
MSM .222 .097
FSM3 .241 −.246
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ANSWERS AND HINTS TO PROBLEMS 675

Variable Points

Name Coordinate 1 Coordinate 2

KIND 9.345 −.391
INTEL 1.298 2.997
HAPPY 6.235 −3.313
LIKE 9.521 −.282
JUST 4.054 5.700

In the biplot, the observation points are tightly clustered around the
point (0, 0), making them difficult to distinguish, whereas variable points
are well spaced. Just and intelligent are highly positively correlated, as are
kind and likeable.

(c) The two-dimensional coordinates of the observation points and variable
points are as follows.

Observation Points

Name Coordinate 1 Coordinate 2

FSM1 −2.435 −1.764
Sister .691 .295
FSM2 1.033 −.217
Father 1.122 .228
Teacher −2.224 1.859
MSM .871 .260
FSM3 .943 −.662

Variable Points

Name Coordinate 1 Coordinate 2

KIND 2.387 −.145
INTEL .331 1.113
HAPPY 1.593 −1.230
LIKE 2.432 −.105
JUST 1.036 2.116

In the biplot, the variable points and observation points are both well
spaced. Father, sister, FSM2, and FSM3 all scored high on the kind, like-
able, and happy variables, whereas teacher and FSM1 scored negatively
on those variables.

(d) The biplot from part (c) seems better because the scales on the variables
and points are more evenly matched.
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676 ANSWERS AND HINTS TO PROBLEMS

15.20 (a) The two-dimensional coordinates of the observation points and variable
points are as follows:

Observation Points

Name Coordinate 1 Coordinate 2

1 49.410 −5.832
2 25.407 −7.658
3 21.600 −2.340
4 −23.545 −6.367
5 −28.477 −4.773
6 −33.341 2.315
7 −28.176 7.992
8 −25.786 12.655
9 −29.703 9.275

10 −33.868 −3.776
11 −33.529 −1.977
12 28.186 −16.031
13 10.804 −6.608
14 .566 3.021
15 77.970 .109
16 12.859 16.294
17 41.960 5.103
18 46.930 19.064
19 34.958 −1.018
20 −16.477 1.148
21 −23.634 −1.055
22 −34.036 −2.424
23 20.632 −5.882
24 −15.873 −6.731
25 −23.023 .745
26 −15.183 −1.942
27 −11.903 −6.917
28 5.273 3.610

Variable Points

Name Coordinate 1 Coordinate 2

North .526 .225
East .429 .752
South .579 −.379
West .452 −.490

In the biplot, the variable points are tightly grouped and the correspond-
ing arrows do not pass through the points for observations.
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ANSWERS AND HINTS TO PROBLEMS 677

(b) The two-dimensional coordinates of the observation points and variable
points are as follows:

Observation Points

Name Coordinate 1 Coordinate 2

1 .303 −.145
2 .156 −.191
3 .132 −.058
4 −.144 −.158
5 −.175 −.119
6 −.205 .058
7 −.173 .199
8 −.158 .315
9 −.182 .231

10 −.208 −.094
11 −.206 −.049
12 .173 −.399
13 .066 −.164
14 .003 .075
15 .478 .003
16 .079 .406
17 .257 .127
18 .288 .474
19 .214 −.025
20 −.101 .029
21 −.145 −.026
22 −.209 −.060
23 .127 −.146
24 −.097 −.168
25 −.141 .019
26 −.093 −.048
27 −.073 −.172
28 .032 .090

Variable Points

Name Coordinate 1 Coordinate 2

North 85.779 9.026
East 69.899 30.223
South 94.377 −15.213
West 73.682 −19.694

In the biplot, the observation points are tightly clustered around the
point (0, 0), making them difficult to distinguish, whereas variable points
are well spaced. All the variables are positively correlated, with south and
west showing the closest relationship.
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678 ANSWERS AND HINTS TO PROBLEMS

(c) The two-dimensional coordinates of the observation points and variable
points are as follows:

Observation Points

Name Coordinate 1 Coordinate 2

1 3.870 −.920
2 1.990 −1.208
3 1.692 −.369
4 −1.844 −1.004
5 −2.230 −.753
6 −2.611 .365
7 −2.207 1.261
8 −2.020 1.996
9 −2.326 1.463

10 −2.652 −.596
11 −2.626 −.312
12 2.207 −2.529
13 .846 −1.042
14 .044 .477
15 6.106 .017
16 1.007 2.571
17 3.286 .805
18 3.675 3.008
19 2.738 −.161
20 −1.290 .181
21 −1.851 −.166
22 −2.666 −.382
23 1.616 −.928
24 −1.243 −1.062
25 −1.803 .118
26 −1.189 −.306
27 −.932 −1.091
28 .413 .569

Variable Points

Name Coordinate 1 Coordinate 2

North 6.718 1.424
East 5.474 4.768
South 7.391 −2.400
West 5.771 −3.107

In the biplot, the variable points and observation points are both well
spaced. Tree 18 is associated with east, 17 with north, 1 and 3 with south,
and 2 and 23 with west.

(d) The biplot from part (c) seems better because the scales on the variables
and points are more evenly matched.
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