APPENDIXB

Answers and Hints to Problems

CHAPTER 2

2.1 (a)
$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} 7 & 0 & 7 \\ 13 & 14 & 3 \end{pmatrix}$$
, $\mathbf{A} - \mathbf{B} = \begin{pmatrix} 1 & 4 & -1 \\ 1 & -4 & 13 \end{pmatrix}$

(b)
$$\mathbf{A'A} = \begin{pmatrix} 65 & 43 & 68 \\ 43 & 29 & 46 \\ 68 & 46 & 73 \end{pmatrix}, \quad \mathbf{AA'} = \begin{pmatrix} 29 & 62 \\ 62 & 138 \end{pmatrix}$$

2.2 (a)
$$(\mathbf{A} + \mathbf{B})' = \begin{pmatrix} 7 & 13 \\ 0 & 14 \\ 7 & 3 \end{pmatrix}$$
, $\mathbf{A}' + \mathbf{B}' = \begin{pmatrix} 7 & 13 \\ 0 & 14 \\ 7 & 3 \end{pmatrix}$

(b)
$$\mathbf{A}' = \begin{pmatrix} 4 & 7 \\ 2 & 5 \\ 3 & 8 \end{pmatrix}, \quad (\mathbf{A}')' = \begin{pmatrix} 4 & 2 & 3 \\ 7 & 5 & 8 \end{pmatrix} = \mathbf{A}$$

2.3 (a)
$$AB = \begin{pmatrix} 5 & 15 \\ 3 & -5 \end{pmatrix}$$
, $BA = \begin{pmatrix} 2 & 6 \\ 11 & -2 \end{pmatrix}$

(b)
$$|\mathbf{A}\mathbf{B}| = -70$$
, $|\mathbf{A}| = -7$, $|\mathbf{B}| = 10$

2.4 (a)
$$A + B = \begin{pmatrix} 3 & 3 \\ 3 & 4 \end{pmatrix}$$
, $tr(A + B) = 7$

(b)
$$tr(\mathbf{A}) = 0$$
, $tr(\mathbf{B}) = 7$

2.5 (a)
$$AB = \begin{pmatrix} 4 & 1 \\ 3 & -3 \end{pmatrix}$$
, $BA = \begin{pmatrix} -1 & 8 & 7 \\ 2 & 4 & 6 \\ 1 & -3 & -2 \end{pmatrix}$

(b)
$$tr(\mathbf{AB}) = 1$$
, $tr(\mathbf{BA}) = 1$

2.6 (b)
$$\mathbf{x} = (1 \ 1 \ -1)'$$

2.7 (a)
$$\mathbf{B}\mathbf{x} = (13, 6, 9)'$$
 (b) $\mathbf{y}'\mathbf{B} = (25, -1, 17)$ (c) $\mathbf{x}'\mathbf{A}\mathbf{x} = 16$

(d)
$$x'Ay = 43$$
 (e) $x'x = 6$ (f) $x'y = 3$

(g)
$$\mathbf{x}\mathbf{x}' = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \\ 2 & -2 & 4 \end{pmatrix}$$

10.1002.0471271357.app2, Downloaded from https://online library.wiley.com/doi/10.1002.0471271357.app2 by Inaq Hinarl NPL, Wiley Online Library on [2201/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.1002.0471271357.app2. Downloaded from https://onlinelibrary.wiley.com/doi/10.1002.0471271357.app2.

(h)
$$\mathbf{x}\mathbf{y}' = \begin{pmatrix} 3 & 2 & 1 \\ -3 & -2 & -1 \\ 6 & 4 & 2 \end{pmatrix}$$

(i)
$$\mathbf{B}'\mathbf{B} = \begin{pmatrix} 62 & 7 & 22 \\ 7 & 14 & 7 \\ 22 & 7 & 41 \end{pmatrix}$$

2.8 (a)
$$\mathbf{x} + \mathbf{y} = (4, 1, 3)', \mathbf{x} - \mathbf{y} = (-2, -3, 1)'$$

(b)
$$(x - y)'A(x - y) = -31$$

2.9
$$\mathbf{B}\mathbf{x} = \mathbf{b}_1 x_1 + \mathbf{b}_2 x_2 + \mathbf{b}_3 x_3$$

$$= (1) \begin{pmatrix} 3 \\ 7 \\ 2 \end{pmatrix} + (-1) \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} + (2) \begin{pmatrix} 4 \\ 0 \\ 5 \end{pmatrix} = \begin{pmatrix} 13 \\ 6 \\ 9 \end{pmatrix}$$

2.10 (a)
$$(\mathbf{AB})' = \begin{pmatrix} 7 & 16 \\ 8 & 4 \\ 7 & 11 \end{pmatrix}$$
, $\mathbf{B'A'} = \begin{pmatrix} 7 & 16 \\ 8 & 4 \\ 7 & 11 \end{pmatrix}$ (c) $|\mathbf{A}| = 5$

2.11 (a)
$$\mathbf{a}'\mathbf{b} = 5$$
, $(\mathbf{a}'\mathbf{b})^2 = 25$

(b)
$$\mathbf{bb'} = \begin{pmatrix} 4 & 2 & 6 \\ 2 & 1 & 3 \\ 6 & 3 & 9 \end{pmatrix}, \quad \mathbf{a'}(\mathbf{bb'})\mathbf{a} = 25$$

2.12 DA =
$$\begin{pmatrix} a & 2a & 3a \\ 4b & 5b & 6b \\ 7c & 8c & 9c \end{pmatrix}$$
, **AD** = $\begin{pmatrix} a & 2b & 3c \\ 4a & 5b & 6c \\ 7a & 8b & 9c \end{pmatrix}$,

$$\mathbf{DAD} = \left(\begin{array}{ccc} a^2 & 2ab & 3ac \\ 4ab & 5b^2 & 6bc \\ 7ac & 8bc & 9c^2 \end{array}\right)$$

$$\mathbf{2.13 \ AB} = \left(\begin{array}{c|cccc} 8 & 9 & 5 & 6 \\ \hline 7 & 5 & 5 & 4 \\ \hline 3 & 4 & 2 & 2 \end{array}\right)$$

2.14
$$\mathbf{AB} = \begin{pmatrix} 3 & 5 \\ 1 & 4 \end{pmatrix}, \quad \mathbf{CB} = \begin{pmatrix} 3 & 5 \\ 1 & 4 \end{pmatrix}$$

2.15 (a)
$$tr(A) = 5$$
, $tr(B) = 5$

(b)
$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} 6 & 4 & 5 \\ 2 & -2 & 1 \\ 4 & 9 & 6 \end{pmatrix}, \quad \text{tr}(\mathbf{A} + \mathbf{B}) = 10$$

(c)
$$|\mathbf{A}| = 0$$
, $|\mathbf{B}| = 2$

(d)
$$\mathbf{AB} = \begin{pmatrix} 9 & 12 & 17 \\ 3 & -1 & 5 \\ 6 & 13 & 12 \end{pmatrix}$$
, $\det(\mathbf{AB}) = 0$

2.16 (a)
$$|\mathbf{A}| = 36$$
 (b) $\mathbf{T} = \begin{pmatrix} 1.7321 & 2.3094 & 1.7321 \\ 0.0 & 1.6330 & 1.2247 \\ 0.0 & 0.0 & 2.1213 \end{pmatrix}$

2.17 (a)
$$\det(\mathbf{A}) = 1$$
 (b) $\mathbf{T} = \begin{pmatrix} 1.7321 & -2.8868 & -.5774 \\ 0.0 & 2.1602 & -.7715 \\ 0.0 & 0.0 & .2673 \end{pmatrix}$

2.18 (a)
$$\mathbf{C} = \begin{pmatrix} .4082 & -.5774 & .7071 \\ .8165 & .5774 & .0000 \\ .4082 & -.5774 & -.7071 \end{pmatrix}$$

2.19 (a) Eigenvalues: 2, 1, -1

Eigenvectors:
$$\begin{pmatrix} .3015 \\ .9045 \\ .3015 \end{pmatrix}$$
, $\begin{pmatrix} .7999 \\ .5368 \\ .2684 \end{pmatrix}$, $\begin{pmatrix} .7071 \\ 0 \\ .7071 \end{pmatrix}$

(b) tr(A) = 2, |A| = -2

2.20 (a)
$$C = \begin{pmatrix} .0000 & .5774 & -.8165 \\ -.7071 & -.5774 & -.4082 \\ .7071 & -.5774 & -.4082 \end{pmatrix}$$

(b)
$$\mathbf{C'AC} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
 (c) $\mathbf{CDC'} = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix} = \mathbf{A}$

2.21 Eigenvalues: 1, 3,
$$\mathbf{C} = \begin{pmatrix} -.7071 & -.7071 \\ -.7071 & .7071 \end{pmatrix}$$
,

$$\mathbf{A}^{1/2} = \mathbf{C}\mathbf{D}^{1/2}\mathbf{C}' = \begin{pmatrix} 1.3660 & -.3660 \\ -.3660 & 1.3660 \end{pmatrix}$$

2.22 (a) The spectral decomposition of A is given by A = CDC', where

$$\mathbf{C} = \begin{pmatrix} .455 & -.580 & .675 \\ .846 & .045 & -.531 \\ .278 & .813 & .511 \end{pmatrix} \text{ and } \mathbf{D} = \text{diag}(13.542, 3.935, -2.477).$$

- (b) The spectral decomposition of A^2 is given by $A^2 = CDC'$, where C is the same as in part (a) and D = diag(183.378, 15.486, 6.135). Note that the diagonal elements of D are the squares of the diagonal elements of D in part (a).
- (c) The spectral decomposition of A^{-1} is given by $A^{-1} = CDC'$, where

$$\mathbf{C} = \begin{pmatrix} -.580 & .455 & .675 \\ .045 & .846 & -.531 \\ .813 & .278 & .511 \end{pmatrix} \text{ and } \mathbf{D} = \text{diag}(.254, .074, -.404).$$

The diagonal elements of **D** are the reciprocals of those of **D** in part (a). The first two columns of C have been interchanged to match the interchange of the corresponding elements of **D**; that is, $\mathbf{D} = (1/\lambda_2, 1/\lambda_1,$ $1/\lambda_3$).

A = UDV', where D = diag(13.161, 7, 000, 3.433),

$$\mathbf{U} = \begin{pmatrix} .282 & -.730 & .424 \\ .591 & -.146 & .184 \\ -.225 & .404 & .886 \\ .721 & .531 & -.040 \end{pmatrix}, \quad \mathbf{V} = \begin{pmatrix} .856 & -.015 & .517 \\ -.156 & .946 & .284 \\ .494 & .324 & -.807 \end{pmatrix}$$

2.24 (a)
$$\mathbf{j'a} = (1)a_1 + (1)a_2 + \cdots + (1)a_n = \sum_i a_i = \mathbf{a'j}$$

(b)
$$\mathbf{j'A} = [(1)a_{11} + (1)a_{21} + \dots + (1)a_{n1}, \dots, (1)a_{1p} + (1)a_{2p} + \dots + (1)a_{np}]$$

= $(\sum_i a_{i1}, \sum_i a_{i2}, \dots, \sum_i a_{ip})$

(c)
$$\mathbf{A}\mathbf{j} = \begin{pmatrix} (1)a_{11} & + & (1)a_{12} & + & \cdots & + & (1)a_{1p} \\ (1)a_{21} & + & (1)a_{22} & + & \cdots & + & (1)a_{2p} \\ \vdots & & \vdots & & & \vdots \\ (1)a_{n1} & + & (1)a_{n2} & + & \cdots & + & (1)a_{np} \end{pmatrix} = \begin{pmatrix} \sum_{j} a_{1j} \\ \sum_{j} a_{2j} \\ \vdots \\ \sum_{j} a_{nj} \end{pmatrix}$$

2.25
$$(x - y)'(x - y) = (x' - y')(x - y) = x'x - x'y - y'x + y'y$$

= $x'x - 2x'y + y'y$

2.26 By (2.27),
$$(A'A)' = A'(A')'$$
. By (2.6), $(A')' = A$. Thus, $(A'A)' = A'A$.

2.27 (a)
$$\sum_{i} \mathbf{a}' \mathbf{x}_{i} = \mathbf{a}' \mathbf{x}_{1} + \mathbf{a}' \mathbf{x}_{2} + \dots + \mathbf{a}' \mathbf{x}_{n}$$

 $= \mathbf{a}' (\mathbf{x}_{1} + \mathbf{x}_{2} + \dots + \mathbf{x}_{n})$ [by (2.21)]
 $= \mathbf{a}' \sum_{i} \mathbf{x}_{i}$

(b)
$$\sum_{i} \mathbf{A} \mathbf{x}_{i} = \mathbf{A} \mathbf{x}_{1} + \mathbf{A} \mathbf{x}_{2} + \dots + \mathbf{A} \mathbf{x}_{n}$$
$$= \mathbf{A} (\mathbf{x}_{1} + \mathbf{x}_{2} + \dots + \mathbf{x}_{n}) \quad \text{[by (2.21)]}$$
$$= \mathbf{A} \sum_{i} \mathbf{x}_{i}$$

$$(c) \sum_{i} (\mathbf{a}' \mathbf{x}_{i})^{2} = \sum_{i} \mathbf{a}' (\mathbf{x}_{i} \mathbf{x}'_{i}) \mathbf{a} \quad \text{[by (2.40)]}$$

$$= \mathbf{a}' (\sum_{i} \mathbf{x}_{i} \mathbf{x}'_{i}) \mathbf{a} \quad \text{[by (2.29)]}$$

$$(d) \sum_{i} \mathbf{A} \mathbf{x}_{i} (\mathbf{A} \mathbf{x}_{i})' = \sum_{i} \mathbf{A} \mathbf{x}_{i} \mathbf{x}'_{i} \mathbf{A}' = \mathbf{A} (\sum_{i} \mathbf{x}_{i} \mathbf{x}'_{i}) \mathbf{A}' \quad \text{[by (2.29)]}$$

(d)
$$\sum_{i} \mathbf{A} \mathbf{x}_{i} (\mathbf{A} \mathbf{x}_{i})' = \sum_{i} \mathbf{A} \mathbf{x}_{i} \mathbf{x}_{i}' \mathbf{A}' = \mathbf{A} (\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}') \mathbf{A}'$$
 [by (2.29)]

2.28 (a)
$$\mathbf{A}\mathbf{x} = \begin{pmatrix} \mathbf{a}_1' \\ \mathbf{a}_2' \end{pmatrix} \mathbf{x} = \begin{pmatrix} \mathbf{a}_1'\mathbf{x} \\ \mathbf{a}_2'\mathbf{x} \end{pmatrix}$$

10 10020471271357 app2, Dwnloaded from http://online library.wiely.ccm/doi/loc library.wiely.ccm/doi/10 10020471271357 app2 by Inaq Hinari NPL, Wiley Online Library on [2010/2023]. See the Terms and Conditions (https://onlinelibrary.wiely.com/doinen-und-tons) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creater Common Library on [2010/2023]. See the Terms and Conditions (https://onlinelibrary.wiely.com/doi/no.) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creater Common Library on [2010/2023]. See the Terms and Conditions (https://onlinelibrary.wiely.com/doi/no.) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creater Common Library on [2010/2023]. See the Terms and Conditions (https://onlinelibrary.wiely.com/doi/no.) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creater Common Library on [2010/2023]. See the Terms and Conditions (https://onlinelibrary.wiely.com/doi/no.) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creater Common Library on [2010/2023]. See the Terms and Conditions (https://onlinelibrary.wiely.com/doi/no.) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creater Common Library on [2010/2023]. See the Terms and Conditions (https://onlinelibrary.wiely.com/doi/no.) on Wiley Online Library for rules of use o

(b)
$$\mathbf{ASA}' = \begin{pmatrix} \mathbf{a}_1' \\ \mathbf{a}_2' \end{pmatrix} \mathbf{S}(\mathbf{a}_1, \mathbf{a}_2) = \begin{pmatrix} \mathbf{a}_1' \\ \mathbf{a}_2' \end{pmatrix} (\mathbf{S}\mathbf{a}_1, \mathbf{S}\mathbf{a}_2)$$
 [by (2.48)]
$$= \begin{pmatrix} \mathbf{a}_1' \mathbf{S}\mathbf{a}_1 & \mathbf{a}_1' \mathbf{S}\mathbf{a}_2 \\ \mathbf{a}_2' \mathbf{S}\mathbf{a}_1 & \mathbf{a}_2' \mathbf{S}\mathbf{a}_2 \end{pmatrix}$$

2.29 (a) If
$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_1' \\ \mathbf{a}_2' \\ \vdots \\ \mathbf{a}_n' \end{pmatrix}$$
, then by (2.68), $\mathbf{A}' = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$ and

$$\mathbf{A}'\mathbf{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n) \begin{pmatrix} \mathbf{a}_1' \\ \mathbf{a}_2' \\ \vdots \\ \mathbf{a}_n' \end{pmatrix} = \mathbf{a}_1 \mathbf{a}_1' + \mathbf{a}_2 \mathbf{a}_2' + \dots + \mathbf{a}_n \mathbf{a}_n' \quad \text{[by (2.66)]}.$$

2.30
$$A^{-1}A = I$$

 $(A^{-1}A)' = I' = I$
 $A'(A^{-1})' = I$
 $(A')^{-1}A'(A^{-1})' = (A')^{-1}I = (A')^{-1}$

2.31
$$\frac{1}{b} \begin{pmatrix} b\mathbf{A}_{11}^{-1} + \mathbf{A}_{11}^{-1} \mathbf{a}_{12} \mathbf{a}'_{12} \mathbf{A}_{11}^{-1} & -\mathbf{A}_{11}^{-1} \mathbf{a}_{12} \\ -\mathbf{a}'_{12} \mathbf{A}_{11}^{-1} & 1 \end{pmatrix} \begin{pmatrix} \mathbf{A}_{11} & \mathbf{a}_{12} \\ \mathbf{a}'_{12} & a_{22} \end{pmatrix}$$

$$= \frac{1}{b} \begin{pmatrix} b\mathbf{I} + \mathbf{A}_{11}^{-1} \mathbf{a}_{12} \mathbf{a}'_{12} - \mathbf{A}_{11}^{-1} \mathbf{a}_{12} \mathbf{a}'_{12} & b\mathbf{A}_{11}^{-1} \mathbf{a}_{12} + \mathbf{A}_{11}^{-1} \mathbf{a}_{12} \mathbf{a}'_{12} \mathbf{A}_{11}^{-1} \mathbf{a}_{12} - \mathbf{A}_{11}^{-1} \mathbf{a}_{12} a_{22} \\ -\mathbf{a}'_{12} + \mathbf{a}'_{12} & -\mathbf{a}'_{12} \mathbf{A}_{11}^{-1} \mathbf{a}_{12} + a_{22} \end{pmatrix}$$

$$= \frac{1}{b} \begin{pmatrix} b\mathbf{I} & \mathbf{0} \\ \mathbf{0}' & b \end{pmatrix}, \text{ where } b = a_{22} - \mathbf{a}'_{12} \mathbf{A}_{11}^{-1} \mathbf{a}_{12}$$

$$= \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0}' & 1 \end{pmatrix}$$

2.32
$$(\mathbf{B} + \mathbf{c}\mathbf{c}') \left(\mathbf{B}^{-1} - \frac{\mathbf{B}^{-1}\mathbf{c}\mathbf{c}'\mathbf{B}^{-1}}{1 + \mathbf{c}'\mathbf{B}^{-1}\mathbf{c}} \right)$$

$$= \mathbf{I} - \frac{\mathbf{c}\mathbf{c}'\mathbf{B}^{-1}}{1 + \mathbf{c}'\mathbf{B}^{-1}\mathbf{c}} + \mathbf{c}\mathbf{c}'\mathbf{B}^{-1} - \frac{\mathbf{c}(\mathbf{c}'\mathbf{B}^{-1}\mathbf{c})\mathbf{c}'\mathbf{B}^{-1}}{1 + \mathbf{c}'\mathbf{B}^{-1}\mathbf{c}} \quad \text{[by (2.26)]}$$

$$= \mathbf{I} - \mathbf{c}\mathbf{c}'\mathbf{B}^{-1} \left(\frac{1 + \mathbf{c}'\mathbf{B}^{-1}\mathbf{c}}{1 + \mathbf{c}'\mathbf{B}^{-1}\mathbf{c}} \right) + \mathbf{c}\mathbf{c}'\mathbf{B}^{-1} = \mathbf{I}$$

2.33
$$|c\mathbf{A}| = |c\mathbf{I}\mathbf{A}|$$

 $= |c\mathbf{I}||\mathbf{A}|$ [by (2.89)]
 $= c^n|\mathbf{A}|$ [by (2.84)]

2.34
$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$

 $|\mathbf{A}\mathbf{A}^{-1}| = |\mathbf{I}|$
 $|\mathbf{A}\|\mathbf{A}^{-1}| = 1$ [by (2.83)]
 $|\mathbf{A}^{-1}| = \frac{1}{|\mathbf{A}|}$

2.35 In (2.93) and (2.94), let $A_{11} = B$, $A_{12} = c$, $A_{21} = -c'$, and $A_{22} = 1$. Then equate the right-hand sides of (2.93) and (2.94) to obtain (2.95).

2.36 By (2.52),
$$\operatorname{tr}(\mathbf{A}\mathbf{A}') = \sum_{i=1}^{n} \mathbf{a}'_{i} \mathbf{a}_{i} = \sum_{i=1}^{n} (a_{i1}^{2} + a_{i2}^{2} + \dots + a_{in}^{2})$$

= $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}$.

- **2.37** Show that $|\mathbf{C}| \neq 0$ by taking the determinant of both sides of $\mathbf{C}'\mathbf{C} = \mathbf{I}$. Thus \mathbf{C} is nonsingular and \mathbf{C}^{-1} exists. Multiply $\mathbf{C}'\mathbf{C} = \mathbf{I}$ on the right by \mathbf{C}^{-1} and on the left by \mathbf{C} .
- **2.38** Multiply $ABx = \lambda x$ on the left by **B**. Then λ is an eigenvalue of **BA**, and **Bx** is an eigenvector.

2.39 (a)
$$(\mathbf{A}^{1/2})^2 = (\mathbf{C}\mathbf{D}^{1/2}\mathbf{C}')^2 = \mathbf{C}\mathbf{D}^{1/2}\mathbf{C}'\mathbf{C}\mathbf{D}^{1/2}\mathbf{C}'$$

= $\mathbf{C}\mathbf{D}\mathbf{C}'$ [by (2.101)]
= \mathbf{A} [by (2.109)]

(b) By (2.114), $\mathbf{A}^{1/2}\mathbf{A}^{1/2} = \mathbf{A}$. By (2.89),

$$|\mathbf{A}^{1/2}\mathbf{A}^{1/2}| = |\mathbf{A}|$$

 $|\mathbf{A}^{1/2}||\mathbf{A}^{1/2}| = |\mathbf{A}|$
 $|\mathbf{A}^{1/2}|^2 = |\mathbf{A}|$

(c) Since **A** is positive definite, we have, from part (b), $|\mathbf{A}^{1/2}| = |\mathbf{A}|^{1/2}$.

CHAPTER 3

- 3.1 $\overline{z} = \sum_{i=1}^{n} z_i/n = \sum_i ay_i/n = (ay_1 + \dots + ay_n)/n$. Now factor a out of the sum.
- **3.2** The numerator of s_z^2 is $\sum_{i=1}^n (z_i \overline{z})^2 = \sum_i (ay_i a\overline{y})^2 = \sum_i [a(y_i \overline{y})]^2$.
- $3.3 \ \overline{x} = 4, \quad \overline{y} = 4$

3.4
$$\mathbf{x} - \overline{\mathbf{x}}\mathbf{j} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} - \overline{\mathbf{x}} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} - \begin{pmatrix} \overline{\mathbf{x}} \\ \overline{\mathbf{x}} \\ \vdots \\ \overline{\mathbf{x}} \end{pmatrix} = \begin{pmatrix} x_1 - \overline{\mathbf{x}} \\ x_2 - \overline{\mathbf{x}} \\ \vdots \\ x_n - \overline{\mathbf{x}} \end{pmatrix}$$

3.5 $\mathbf{y}_i - \overline{\mathbf{y}} = \begin{pmatrix} y_{i1} \\ y_{i2} \\ y_{i3} \end{pmatrix} - \begin{pmatrix} \overline{y}_1 \\ \overline{y}_2 \\ \overline{y}_3 \end{pmatrix} = \begin{pmatrix} y_{i1} - \overline{y}_1 \\ y_{i2} - \overline{y}_2 \\ y_{i3} - \overline{y}_3 \end{pmatrix}$

$$\sum_{i=1}^{n} (\mathbf{y}_i - \overline{\mathbf{y}})(\mathbf{y}_i - \overline{\mathbf{y}})' = \sum_{i=1}^{n} \begin{pmatrix} y_{i1} - \overline{y}_1 \\ y_{i2} - \overline{y}_2 \\ y_{i3} - \overline{y}_3 \end{pmatrix} (y_{i1} - \overline{y}_1, y_{i2} - \overline{y}_2, y_{i3} - \overline{y}_3)$$

$$= \sum_{i=1}^{n} \begin{pmatrix} (y_{i1} - \overline{y}_1)^2 & (y_{i1} - \overline{y}_1)(y_{i2} - \overline{y}_2) & (y_{i1} - \overline{y}_1)(y_{i3} - \overline{y}_3) \\ (y_{i2} - \overline{y}_2)(y_{i1} - \overline{y}_1) & (y_{i2} - \overline{y}_2)^2 & (y_{i2} - \overline{y}_2)(y_{i3} - \overline{y}_3) \\ (y_{i3} - \overline{y}_3)(y_{i1} - \overline{y}_1) & (y_{i3} - \overline{y}_3)(y_{i2} - \overline{y}_2) & (y_{i3} - \overline{y}_3)^2 \end{pmatrix}$$

- **3.6** $\overline{z} = \sum_{i=1}^{n} z_i/n = \sum_i \mathbf{a}' \mathbf{y}_i/n = (\mathbf{a}' \mathbf{y}_1 + \dots + \mathbf{a}' \mathbf{y}_n)/n$. Now factor out \mathbf{a}' on the left. See also (2.42).
- 3.7 The numerator of s_z^2 is $\sum_{i=1}^n (z_i \overline{z})^2 = \sum_i (\mathbf{a}' \mathbf{y}_i \mathbf{a}' \overline{\mathbf{y}})^2 = \sum_i (\mathbf{a}' \mathbf{y}_i \mathbf{a}' \overline{\mathbf{y}})$. The scalar $\mathbf{a}' \mathbf{y}_i$ is equal to its transpose, as in (2.39). Thus $\mathbf{a}' \mathbf{y}_i = (\mathbf{a}' \mathbf{y}_i)' = \mathbf{y}_i' \mathbf{a}$, and $\sum_i (\mathbf{a}' \mathbf{y}_i \mathbf{a}' \overline{\mathbf{y}}) (\mathbf{a}' \mathbf{y}_i \mathbf{a}' \overline{\mathbf{y}}) = \sum_i (\mathbf{a}' \mathbf{y}_i \mathbf{a}' \overline{\mathbf{y}}) (\mathbf{y}_i' \mathbf{a} \overline{\mathbf{y}}' \mathbf{a})$. By (2.22) and (2.24), this becomes $\sum_i \mathbf{a}' (\mathbf{y}_i \overline{\mathbf{y}}) (\mathbf{y}_i \overline{\mathbf{y}})' \mathbf{a}$. Now factor out \mathbf{a}' on the left and \mathbf{a} on the right. See also (2.44).
- **3.8** By (3.63) and (3.64),

$$\mathbf{ASA'} = \left(\begin{array}{cccc} \mathbf{a_1'Sa_1} & \mathbf{a_1'Sa_2} & \cdots & \mathbf{a_1'Sa_k} \\ \mathbf{a_2'Sa_1} & \mathbf{a_2'Sa_2} & \cdots & \mathbf{a_2'Sa_k} \\ \vdots & \vdots & & \vdots \\ \mathbf{a_k'Sa_1} & \mathbf{a_k'Sa_2} & \cdots & \mathbf{a_k'Sa_k} \end{array} \right),$$

from which the result follows immediately.

10.1002/047/271357_app2, Downloaded from https://calline.library.wiej.ccm/doi/10.102/0471271357.app2 by Iraq Himari N.L., Wiley Online Library on [22.01/2023]. See the Terms and Conditions (https://onlinelbritary.wiej.com/etmens-ad-conditions) on Wiley Online Library for rules of use; O.A articles are governed by the applicable Creative Common Licenses

3.9
$$\operatorname{cov}(\mathbf{z}) = \operatorname{cov}[(\mathbf{\Sigma}^{1/2})^{-1}\overline{\mathbf{y}} - (\mathbf{\Sigma}^{1/2})^{-1}\boldsymbol{\mu}]$$

$$= (\mathbf{\Sigma}^{1/2})^{-1}\operatorname{cov}(\overline{\mathbf{y}})[(\mathbf{\Sigma}^{1/2})^{-1}]' \qquad [\text{by (3.76)}]$$

$$= (\mathbf{\Sigma}^{1/2})^{-1}\left(\frac{\mathbf{\Sigma}}{n}\right)(\mathbf{\Sigma}^{1/2})^{-1}$$

$$= \frac{1}{n}(\mathbf{\Sigma}^{1/2})^{-1}\mathbf{\Sigma}^{1/2}\mathbf{\Sigma}^{1/2}(\mathbf{\Sigma}^{1/2})^{-1} \qquad [\text{by (2.114)}]$$

$$= \frac{1}{n}\mathbf{I}$$

- **3.10** Answers are given in Examples 3.6 and 3.7.
- **3.11** (a) |S| = 459.956 (b) tr(S) = 213.043

(b)
$$tr(S) = 213.04$$

3.12 (a)
$$|S| = 27, 236, 586$$

(b)
$$tr(S) = 292.891$$

3.12 (a)
$$|\mathbf{S}| = 27, 236, 586$$
 (b) $tr(\mathbf{S}) = 292.89$

$$3.13 \mathbf{R} = \begin{pmatrix} 1.000 & .614 & .757 & .575 & .413 \\ .614 & 1.000 & .547 & .750 & .548 \\ .757 & .547 & 1.000 & .605 & .692 \\ .575 & .750 & .605 & 1.000 & .524 \\ .413 & .548 & .692 & .524 & 1.000 \end{pmatrix}$$

- **3.14** $\overline{z} = 83.298$, $s_z^2 = 1048.659$
- **3.15** $r_{zw} = -.6106$
- **3.16** $y_1 = (1, 0, 0)\mathbf{y} = \mathbf{a}'\mathbf{y}, \quad \frac{1}{2}(y_2 + y_3) = (0, \frac{1}{2}, \frac{1}{2})\mathbf{y} = \mathbf{b}'\mathbf{y}$. Use (3.57) to obtain

$$r_{zw} = .4873.$$
3.17 (a) $\overline{\mathbf{z}} = \begin{pmatrix} 38.369 \\ 40.838 \\ -51.727 \end{pmatrix}$, $\mathbf{S}_z = \begin{pmatrix} 323.64 & 19.25 & -460.98 \\ 19.25 & 588.67 & 104.07 \\ -460.98 & 104.07 & 686.27 \end{pmatrix}$

(b)
$$\mathbf{R}_z = \begin{pmatrix} 1.0000 & .0441 & -.9781 \\ .0441 & 1.0000 & .1637 \\ -.9781 & .1637 & 1.0000 \end{pmatrix}$$

3.18 (a)
$$\overline{\mathbf{y}} = \begin{pmatrix} 48.655 \\ 49.625 \\ 50.570 \\ 51.445 \end{pmatrix}$$
, $\mathbf{S} = \begin{pmatrix} 6.3300 & 6.1891 & 5.7770 & 5.5348 \\ 6.1891 & 6.4493 & 6.1534 & 5.9057 \\ 5.7770 & 6.1534 & 6.9180 & 6.9267 \\ 5.5348 & 5.9057 & 6.9267 & 7.4331 \end{pmatrix}$,

$$\mathbf{R} = \begin{pmatrix} 1.0000 & .9687 & .8730 & .8069 \\ .9687 & 1.0000 & .9212 & .8530 \\ .8730 & .9212 & 1.0000 & .9659 \\ .8069 & .8530 & .9659 & 1.0000 \end{pmatrix}$$

(b)
$$|\mathbf{S}| = 1.0865$$
, $tr(\mathbf{S}) = 27.1304$

3.19 (a)
$$\overline{z} = 44.1400$$
, $s_z^2 = 21.2309$, $\overline{w} = 103.8850$, $s_w^2 = 30.8161$ (b) $s_{zw} = 6.5359$, $r_{zw} = .2555$

(b)
$$s_{zw} = 6.5359$$
, $r_{zw} = .2555$

3.20
$$\overline{\mathbf{z}} = \begin{pmatrix} 401.40 \\ -47.55 \\ 150.48 \end{pmatrix}$$
, $\mathbf{S}_z = \begin{pmatrix} 398.33 & -44.35 & 148.35 \\ -44.35 & 12.36 & -16.90 \\ 148.35 & -16.90 & 59.46 \end{pmatrix}$, $\mathbf{R}_z = \begin{pmatrix} 1.00 & -.63 & .96 \\ -.63 & 1.00 & -.62 \\ .96 & -.62 & 1.00 \end{pmatrix}$

3.21 (a)
$$\left(\frac{\overline{y}}{\overline{x}}\right) = \left(\frac{\frac{185.72}{151.12}}{\frac{183.84}{149.24}}\right)$$

(b)
$$\mathbf{S} = \begin{pmatrix} 95.29 & 52.87 & 69.66 & 46.11 \\ 52.87 & 54.36 & 51.31 & 35.05 \\ \hline 69.66 & 51.31 & 100.81 & 56.54 \\ 46.11 & 35.05 & 56.54 & 45.02 \end{pmatrix}$$

3.22
$$\left(\frac{\overline{y}}{\overline{x}}\right) = \begin{pmatrix} 70.08\\ 73.54\\ 75.10\\ \hline 109.68\\ 104.24\\ 109.98 \end{pmatrix}$$

$$\mathbf{S} = \begin{pmatrix} 95.54 & 17.61 & 12.18 & 60.52 & 23.00 & 62.84 \\ 17.61 & 73.19 & 14.25 & 5.73 & 61.28 & -1.66 \\ 12.18 & 14.25 & 76.17 & 46.75 & 32.77 & 69.84 \\ \hline 60.52 & 5.73 & 46.75 & 808.63 & 320.59 & 227.36 \\ 23.00 & 61.28 & 32.77 & 320.59 & 505.86 & 167.35 \\ 62.84 & -1.66 & 69.84 & 227.36 & 167.35 & 508.71 \\ \hline \end{cases}$$

CHAPTER 4

4.1 $|\Sigma_1| = 1$, $\operatorname{tr}(\Sigma_1) = 20$, $|\Sigma_2| = 4$, $\operatorname{tr}(\Sigma_2) = 15$. Thus $\operatorname{tr}(\Sigma_1) > \operatorname{tr}(\Sigma_2)$, but $|\Sigma_1| < |\Sigma_2|$. When converted to correlations, we have

$$\mathbf{P}_{\rho 1} = \begin{pmatrix} 1.00 & .96 & .80 \\ .96 & 1.00 & .89 \\ .80 & .89 & 1.00 \end{pmatrix}, \quad \mathbf{P}_{\rho 2} = \begin{pmatrix} 1.00 & .87 & .41 \\ .87 & 1.00 & .71 \\ .41 & .71 & 1.00 \end{pmatrix}.$$

As noted at the end of Section 4.1.3, a decrease in intercorrelations or an increase in the variances will lead to a larger $|\Sigma|$. In this case, the decrease in correlations from Σ_1 to Σ_2 outweighed the increase in the variances (the increase in trace).

4.2
$$E(\mathbf{z}) = (\mathbf{T}')^{-1} [E(\mathbf{y}) - \boldsymbol{\mu}]$$
 [by (3.75)]
 $= (\mathbf{T}')^{-1} [\boldsymbol{\mu} - \boldsymbol{\mu}] = \mathbf{0},$
 $cov(\mathbf{z}) = (\mathbf{T}')^{-1} \boldsymbol{\Sigma} [(\mathbf{T}')^{-1}]'$ [by (3.76)]
 $= (\mathbf{T}')^{-1} \mathbf{T}' \mathbf{T} \mathbf{T}^{-1}$ [by (2.75) and (2.79)]
 $= \mathbf{I}$

4.3 By the last expression in Section 2.3.1,

$$\prod_{i=1}^{n} \frac{1}{(\sqrt{2\pi})^{p} |\mathbf{\Sigma}|^{1/2}} = \frac{1}{(\sqrt{2\pi})^{np} |\mathbf{\Sigma}|^{n/2}}.$$

The sum in the exponent of (4.13) follows from the basic algebra of exponents.

- **4.4** Since $(\mathbf{y} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y} \boldsymbol{\mu})$ is a scalar, we have $E[(\mathbf{y} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y} \boldsymbol{\mu})] = E\{\text{tr}[\mathbf{y} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y} \boldsymbol{\mu})]\} = E\{\text{tr}[\boldsymbol{\Sigma}^{-1} (\mathbf{y} \boldsymbol{\mu})(\mathbf{y} \boldsymbol{\mu})']\} = \text{tr}[\boldsymbol{\Sigma}^{-1} E(\mathbf{y} \boldsymbol{\mu})(\mathbf{y} \boldsymbol{\mu})'] = \text{tr}(\boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}) = \text{tr}(\mathbf{I}_p) = p.$
- **4.5** The other two terms are of the form $\frac{1}{2}\sum_{i=1}^{n}(\overline{\mathbf{y}}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{y}_{i}-\overline{\mathbf{y}})$, which is equal to $\frac{1}{2}[(\overline{\mathbf{y}}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}]\sum_{i=1}^{n}(\overline{\mathbf{y}}_{i}-\overline{\mathbf{y}})$. This vanishes because $\sum_{i=1}^{n}(\mathbf{y}_{i}-\overline{\mathbf{y}})=n\overline{\mathbf{y}}-n\overline{\mathbf{y}}=\mathbf{0}$.
- **4.6** We replace y_i in $\sqrt{b_1}$ by $z_i = ay_i + b$. By an extension of (3.3), $\overline{z} = a\overline{y} + b$. Then (4.18) becomes

$$\begin{split} \frac{\sqrt{n}\sum_{i=1}^{n}(z_{i}-\overline{z})^{3}}{[\sum_{i=1}^{n}(z_{i}-\overline{z})^{2}]^{3/2}} &= \frac{\sqrt{n}\sum_{i}(ay_{i}+b-a\overline{y}-b)^{3}}{[\sum_{i}(ay_{i}+b-a\overline{y}-b)^{2}]^{3/2}} \\ &= \frac{\sqrt{n}a^{3}\sum_{i}(y_{i}-\overline{y})^{3}}{[a^{2}\sum_{i}(y_{i}-\overline{y})^{2}]^{3/2}} &= \frac{\sqrt{n}\sum_{i}(y_{i}-\overline{y})^{3}}{[\sum_{i}(y_{i}-\overline{y})^{2}]^{3/2}} &= \sqrt{b_{1}}. \end{split}$$

Similarly, if (4.19) is expressed in terms of $z_i = ay_i + b$, it reduces to b_2 in terms of y_i .

- **4.7** $\beta_{2,p} = E[(\mathbf{y} \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{y} \boldsymbol{\mu})]^2$ by (4.33). But when \mathbf{y} is $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $v = (\mathbf{y} \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{y} \boldsymbol{\mu})$ is distributed as $\chi^2(p)$ by property 3 in Section 4.2. Then $E(v^2) = \text{var}(v) + [E(v)]^2$.
- **4.8** To show that $b_{1,p}$ and $b_{2,p}$ are invariant under the transformation $\mathbf{z} = \mathbf{A}\mathbf{y}_i + \mathbf{b}$, where \mathbf{A} is nonsingular, it is sufficient to show that $g_{ij}(\mathbf{z}) = (\mathbf{y}_i \overline{\mathbf{y}})' \hat{\mathbf{\Sigma}}^{-1} (\mathbf{y}_j \overline{\mathbf{y}})$. By (3.67) and (3.68), $\overline{\mathbf{z}} = \mathbf{A}\overline{\mathbf{y}} + \mathbf{b}$ and $\hat{\mathbf{\Sigma}}_z = \mathbf{A}\hat{\mathbf{\Sigma}}\mathbf{A}'$. Then g_{ij} for \mathbf{z} becomes

$$g_{ij}(\mathbf{z}) = (\mathbf{z}_i - \overline{\mathbf{z}})' \hat{\mathbf{\Sigma}}_z^{-1} (\mathbf{z}_j - \overline{\mathbf{z}})$$

$$= (\mathbf{A}\mathbf{y}_i + \mathbf{b} - \mathbf{A}\overline{\mathbf{y}} - \mathbf{b})' (\mathbf{A}\hat{\mathbf{\Sigma}}\mathbf{A}')^{-1} (\mathbf{A}\mathbf{y}_j + \mathbf{b} - \mathbf{A}\overline{\mathbf{z}} - \mathbf{b})$$

$$= (\mathbf{y}_i - \overline{\mathbf{y}})' \mathbf{A}' (\mathbf{A}')^{-1} \hat{\mathbf{\Sigma}}^{-1} \mathbf{A}^{-1} \mathbf{A} (\mathbf{y}_j - \overline{\mathbf{y}})$$

$$= (\mathbf{y}_i - \overline{\mathbf{y}})' \hat{\mathbf{\Sigma}}^{-1} (\mathbf{y}_j - \overline{\mathbf{y}}) = g_{ij}(\mathbf{y}).$$

- **4.9** Let i = (n) in (4.44); then solve for $D_{(n)}^2$ in (4.43) and substitute into (4.44) to obtain $F_{(n)}$ in terms of w, as in (4.45).
- **4.10** (a) $\mathbf{a}' = (2, -1, 3), \quad z = \mathbf{a}'\mathbf{y} \text{ is } N(17, 21)$

(b)
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix}, \quad \mathbf{z} = \mathbf{A}\mathbf{y} \text{ is } N_2 \begin{bmatrix} \begin{pmatrix} 8 \\ 10 \end{pmatrix}, \begin{pmatrix} 29 & -1 \\ -1 & 9 \end{pmatrix} \end{bmatrix}$$

- (c) By property 4b in Section 4.2, y_2 is $N(1, \overline{13})$
- (d) By property 4a in Section 4.2, $\begin{pmatrix} y_1 \\ y_3 \end{pmatrix}$ is $N_2 \begin{bmatrix} 3 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 6 & -2 \\ -2 & 4 \end{pmatrix}$.

(e)
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$
, $\mathbf{A}\mathbf{y}$ is $N_3 \begin{bmatrix} \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 6 & -2 & 3.5 \\ -2 & 4 & 1 \\ 3.5 & 1 & 5.25 \end{pmatrix} \end{bmatrix}$

4.11 (a)
$$\mathbf{z} = \begin{pmatrix} .408 & 0 & 0 \\ -.047 & .279 & 0 \\ .285 & -.247 & .731 \end{pmatrix} \begin{pmatrix} y - 3 \\ y - 1 \\ y - 4 \end{pmatrix}$$

(b)
$$\mathbf{z} = \begin{pmatrix} .465 & -.070 & .170 \\ -.070 & .326 & -.166 \\ .170 & -.166 & .692 \end{pmatrix} \begin{pmatrix} y - 3 \\ y - 1 \\ y - 4 \end{pmatrix}$$

- (c) By (4.6), $(\mathbf{y} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y} \boldsymbol{\mu})$ is distributed as χ_3^2 .
- **4.12** (a) $\mathbf{a}' = (4, -2, 1, -3), \quad z = \mathbf{a}'\mathbf{y} \text{ is } N(-30, 153)$

(b)
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -2 & 3 & 1 & -2 \end{pmatrix}, \quad \mathbf{z} = \mathbf{A}\mathbf{y} \text{ is } N_2 \begin{bmatrix} 5 \\ 2 \end{pmatrix}, \begin{pmatrix} 27 & -79 \\ -79 & 361 \end{pmatrix}$$

(c)
$$\mathbf{A} = \begin{pmatrix} 3 & 1 & -4 & -1 \\ -1 & -3 & 1 & -2 \\ 2 & 2 & 4 & -5 \end{pmatrix}$$

$$\mathbf{z} = \mathbf{A}\mathbf{y} \text{ is } N_3 \begin{bmatrix} -4 \\ -18 \\ -27 \end{bmatrix}, \begin{bmatrix} 35 & -18 & -6 \\ -18 & 46 & 14 \\ -6 & 14 & 93 \end{bmatrix}$$

- (d) By property 4b in Section 4.2, y_3 is N(-1, 2).
- (e) By property 4a in Section 4.2, $\begin{pmatrix} y_2 \\ y_4 \end{pmatrix}$ is $N_2 \begin{bmatrix} 3 \\ 5 \end{pmatrix}$, $\begin{pmatrix} 9 & -6 \\ -6 & 9 \end{pmatrix} \end{bmatrix}$.

(f)
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

$$\mathbf{Ay} \text{ is } N_4 \begin{bmatrix} -2 \\ .5 \\ 0 \\ 1.25 \end{bmatrix}, \begin{pmatrix} 11 & 1.5 & 2 & 3.75 \\ 1.5 & 1 & .67 & .875 \\ 2 & .67 & .67 & 1 \\ 3.75 & .875 & 1 & 1.688 \end{pmatrix}$$

4.13 (a)
$$\mathbf{z} = \begin{pmatrix} .302 & 0 & 0 & 0 \\ .408 & .561 & 0 & 0 \\ -.087 & .261 & 1.015 & 0 \\ -.858 & -.343 & -.686 & .972 \end{pmatrix} \begin{pmatrix} y+2 \\ y-3 \\ y+1 \\ y-5 \end{pmatrix}$$

(b)
$$\mathbf{z} = \begin{pmatrix} .810 & .305 & .143 & -.479 \\ .305 & .582 & .249 & -.083 \\ .143 & .249 & 1.153 & -.298 \\ -.480 & -.083 & -.298 & .787 \end{pmatrix} \begin{pmatrix} y+2 \\ y-3 \\ y+1 \\ y-5 \end{pmatrix}$$

(c)
$$(\mathbf{y} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y} - \boldsymbol{\mu}) = (\mathbf{y} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1/2} \boldsymbol{\Sigma}^{-1/2} (\mathbf{y} - \boldsymbol{\mu}) = \mathbf{z}' \mathbf{z}$$
, which is $\chi^2(p) = \chi^2(4)$.

- **4.14** The variables in (b), (c), and (d) are independent.
- 4.15 The variables in (a), (c), (d), (f), (i), (j), and (n) are independent.

4.16 (a)
$$E(\mathbf{y}|\mathbf{x}) = \boldsymbol{\mu}_{y} + \boldsymbol{\Sigma}_{yx} \boldsymbol{\Sigma}_{xx}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{x})$$

$$= \begin{pmatrix} 2 \\ -1 \end{pmatrix} + \begin{pmatrix} -3 & 2 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 5 & -2 \\ -2 & 4 \end{pmatrix}^{-1} \begin{pmatrix} x_{1} - 3 \\ x_{2} - 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ -1 \end{pmatrix} + \begin{pmatrix} -.5 & .25 \\ .5 & 1.25 \end{pmatrix} \begin{pmatrix} x_{1} - 3 \\ x_{2} - 1 \end{pmatrix}$$

$$= \begin{pmatrix} 3.25 \\ -3.75 \end{pmatrix} + \begin{pmatrix} -.5 & .25 \\ .5 & 1.25 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix}$$

(b)
$$cov(\mathbf{y}|\mathbf{x}) = \mathbf{\Sigma}_{yy} - \mathbf{\Sigma}_{yx}\mathbf{\Sigma}_{xx}^{-1}\mathbf{\Sigma}_{xy}$$

$$= \begin{pmatrix} 7 & 3 \\ 3 & 6 \end{pmatrix} - \begin{pmatrix} -3 & 2 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 5 & -2 \\ -2 & 4 \end{pmatrix}^{-1} \begin{pmatrix} -3 & 0 \\ 2 & 4 \end{pmatrix}$$

$$= \begin{pmatrix} 7 & 3 \\ 3 & 6 \end{pmatrix} - \begin{pmatrix} 2 & 1 \\ 1 & 5 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$$

4.17 (a)
$$E(\mathbf{y}|\mathbf{x}) = \boldsymbol{\mu}_y + \boldsymbol{\Sigma}_{yx} \boldsymbol{\Sigma}_{xx}^{-1} (\mathbf{x} - \boldsymbol{\mu}_x)$$

$$= \begin{pmatrix} 3 \\ -2 \end{pmatrix} + \begin{pmatrix} 15 & 0 & 3 \\ 8 & 6 & -2 \end{pmatrix} \begin{pmatrix} 50 & 8 & 5 \\ 8 & 4 & 0 \\ 5 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x_1 - 4 \\ x_2 + 3 \\ x_3 - 5 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \\ -2 \end{pmatrix} - \begin{pmatrix} 15 \\ -24.5 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 3 \\ .67 & .167 & -5.33 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= \begin{pmatrix} -12 \\ 22.5 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 3 \\ .67 & .167 & -5.33 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

(b)
$$\operatorname{cov}(\mathbf{y}|\mathbf{x}) = \mathbf{\Sigma}_{yy} - \mathbf{\Sigma}_{yx} \mathbf{\Sigma}_{xx}^{-1} \mathbf{\Sigma}_{xy}$$

$$= \begin{pmatrix} 14 & -8 \\ -8 & 18 \end{pmatrix} - \begin{pmatrix} 15 & 0 & 3 \\ 8 & 6 & -2 \end{pmatrix} \begin{pmatrix} 50 & 8 & 5 \\ 8 & 4 & 0 \\ 5 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 15 & 8 \\ 0 & 6 \\ 3 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} 14 & -8 \\ -8 & 18 \end{pmatrix} - \begin{pmatrix} 9 & -6 \\ -6 & 17 \end{pmatrix} = \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix}$$

- 10.1002/047/271357_app2, Downloaded from https://calline.library.wiej.ccm/doi/10.102/0471271357.app2 by Iraq Himari N.L., Wiley Online Library on [22.01/2023]. See the Terms and Conditions (https://onlinelbritary.wiej.com/etmens-ad-conditions) on Wiley Online Library for rules of use; O.A articles are governed by the applicable Creative Common Licenses
- **4.18** (a) By the central limit theorem in Section 4.3.2, $\sqrt{n}(\overline{y} \mu)$ is approximately $N_p(\mathbf{0}, \Sigma)$.
 - (b) $\overline{\mathbf{y}}$ is approximately $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}/n)$.
- **4.19** (a) The plots show almost no deviation from normality.

(b)	Variable	y_1	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄
	$\sqrt{b_1}$.3069	.3111	.0645	.0637
	b_2	1.932	2.107	1.792	1.570

The values of $\sqrt{b_1}$ show a small amount of positive skewness, but none exceeds the upper 2.5% critical value for $\sqrt{b_1}$ given in Table A.1 as .942. The values of b_2 show negative kurtosis. For y_4 , the kurtosis is significant, since $b_2 < 1.74$, the lower 2.5 percentile in Table A.3.

From Table A.4, the lower 2.5 percentile for Y is -3.04 and the upper 97.5 percentile is .628. We reject the hypothesis of normality only for y_3 .

(d) z defined in (4.24) is approximately N(0, 3/n). To obtain a N(0,1) statistic, we calculate $z^* = z/\sqrt{3/n}$.

	Varia	able	y_1		y_2	y_3		<i>y</i> ₄			
	z*		3366	30	95 –	.0737	08	56			
4.20 (a)	i	1	2	3	4	5	6	7	8	9	10
	D_i^2	1.06	1.60	7.54	3.54	4.61	.63	.81	2.47	.95	3.78

(b) The .05 critical value from Table A.6 is 7.01. $D_{(10)}^2 = 7.54 > 7.01$.

(c)	i	1	2	3	4	5	6	7	8	9	10
	$u_{(i)}$.08	.10	.12	.13	.20	.30	.44	.47	.57	.93
	v_i	.07	.13	.18	.23	.28	.34	.40	.47	.55	.68

The plot of $(v_i, u_{(i)})$ shows some evidence of nonlinearity and an outlier.

(d) $b_{1,p} = 7.255$, $b_{2,p} = 14.406$. Both (barely) exceed upper .05 critical values in Table A.5.

4.21 (b)	1.21 (b) Variable		y_2	y_3	y_4	<i>y</i> ₅	
	$\sqrt{b_1}$.2176	.5857	.7461	3327	1772	
					1.774		

None of the values of $\sqrt{b_1}$ exceeds 1.134 (from Table A.1) or is less than -1.134. None of the values of b_2 is less than 1.53 (from Table A.3). Thus there is no significant departure from normality.

(c) Variable
$$y_1$$
 y_2 y_3 y_4 y_5
 D .279 .269 .275 .281 .276
 Y -.305 -1.399 -.805 -.114 -.669

(d) $z^* = z/\sqrt{3/n}$, where z is defined in (4.24).

		Var	iable	y_1		<i>y</i> ₂	<i>y</i> ₃	i	<i>y</i> ₄	<i>y</i> ₅			
		- 2	ζ*	4848	3 -1	.7183	-1.3	627	.8091	.3686			
4.22	(a)	i	1	2	3	4	5	6	7	8	9	10	11
		D_i^2	5.20	2.15	7.63	5.34	5.54	1.73	5.21	5.90	2.72	6.02	2.56
	(c)	i	1	2	3	4	5	6	7	8	9	10	11
		$u_{(i)}$.19	.24	.28	.30	.57	.57	.59	.61	.65	.66	.84
		v_i	.18	3 .27	.34	.39	.45	.50	.55	.61	.66	.73	.82

The plot shows a sharp break from the fourth to the fifth points.

- (d) $b_{1,p} = 12.985, b_{2,p} = 29.072$
- **4.23** (a) The Q-Q plots for y_1 and y_5 show little departure from normality. The Q-Q plots for y_2 and y_3 show some evidence of heavier tails than the normal. The Q-Q plots for y_4 and y_6 show some evidence of positive skewness.

(b) Variable
$$y_1$$
 y_2 y_3 y_4 y_5 y_6
 $\sqrt{b_1}$.5521 .0302 .7827 1.4627 .2219 .9974
 b_2 3.160 3.275 2.772 6.675 2.176 4.528

(c) Variable
$$y_1$$
 y_2 y_3 y_4 y_5 y_6
 D .276 .274 .275 .260 .286 .271
 Y -1.469 -1.845 -1.675 -5.249 .889 -2.741

- **4.24** (a) $D_i^2 = 7.816, 3.640, 5.730, \dots, 6.433$
 - **(b)** $D_{(51)}^2 = 25.628$. By extrapolation in Table A.6, the .05 critical value for p = 6 is approximately 19. Thus we reject the hypothesis of multivariate normality.
 - (c) $(v_i, u_{(i)}) = (.021, .024), (.029, .028), \dots, (.306, .523)$. The plot shows nonlinearity for the last 4 points.
 - (d) $b_{1,p} = 16.287$, $b_{2,p} = 58.337$. By extrapolation to p = 6 in Table A.5, both appear to exceed their critical values.

10.1002/047/271357_app2, Downloaded from https://calline.library.wiej.ccm/doi/10.102/0471271357.app2 by Iraq Himari N.L., Wiley Online Library on [22.01/2023]. See the Terms and Conditions (https://onlinelbritary.wiej.com/etmens-ad-conditions) on Wiley Online Library for rules of use; O.A articles are governed by the applicable Creative Common Licenses

5.1 By (5.6), we have

$$(\overline{\mathbf{y}} - \boldsymbol{\mu}_0)' \left(\frac{\mathbf{S}}{n}\right)^{-1} (\overline{\mathbf{y}} - \boldsymbol{\mu}_0) = (\overline{\mathbf{y}} - \boldsymbol{\mu}_0)' \left(\frac{1}{n}\right)^{-1} \mathbf{S}^{-1} (\overline{\mathbf{y}} - \boldsymbol{\mu}_0)$$
$$= n(\overline{\mathbf{y}} - \boldsymbol{\mu}_0)' \mathbf{S}^{-1} (\overline{\mathbf{y}} - \boldsymbol{\mu}_0).$$

5.2 From (5.9), we have

$$\begin{split} \frac{n_1 n_2}{n_1 + n_2} (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)' \mathbf{S}_{\text{pl}}^{-1} (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2) &= (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)' \left(\frac{n_1 + n_2}{n_1 n_2} \right)^{-1} \mathbf{S}_{\text{pl}}^{-1} (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2) \\ &= (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)' \left(\frac{n_1 + n_2}{n_1 n_2} \mathbf{S}_{\text{pl}} \right)^{-1} (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2) \\ &= (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)' \left[\left(\frac{1}{n_1} + \frac{1}{n_2} \right) \mathbf{S}_{\text{pl}} \right]^{-1} (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2). \end{split}$$

5.3 By (5.13) and (5.14),

$$t^{2}(\mathbf{a}) = \frac{[\mathbf{a}'(\overline{\mathbf{y}}_{1} - \overline{\mathbf{y}}_{2})]^{2}}{[(n_{1} + n_{2})/n_{1}n_{2}]\mathbf{a}'\mathbf{S}_{pl}\mathbf{a}} = \frac{n_{1}n_{2}}{n_{1} + n_{2}} \frac{[(\overline{\mathbf{y}}_{1} - \overline{\mathbf{y}}_{2})'\mathbf{S}_{pl}^{-1}(\overline{\mathbf{y}}_{1} - \overline{\mathbf{y}}_{2})]^{2}}{(\overline{\mathbf{y}}_{1} - \overline{\mathbf{y}}_{2})'\mathbf{S}_{pl}^{-1}\mathbf{S}_{pl}\mathbf{S}_{pl}^{-1}(\overline{\mathbf{y}}_{1} - \overline{\mathbf{y}}_{2})}.$$

- **5.4** It is assumed that y and x have a bivariate normal distribution. Let $\mathbf{y}_i = \begin{pmatrix} y_i \\ x_i \end{pmatrix}$. Then d_i can be expressed as $d_i = y_i x_i = \mathbf{a}' \mathbf{y}_i$, where $\mathbf{a}' = (1, -1)$. By property 1a in Section 4.2, d_i is $N(\mathbf{a}' \boldsymbol{\mu}, \mathbf{a}' \boldsymbol{\Sigma} \mathbf{a})$. Show that $\mathbf{a}' \overline{\mathbf{y}} = \overline{y} \overline{x}$, $\mathbf{a}' \mathbf{S} \mathbf{a} = s_y^2 2s_{yx} + s_x^2 = s_d^2$, and that $T^2 = n(\mathbf{a}' \overline{\mathbf{y}})' (\mathbf{a}' \mathbf{S} \mathbf{a})^{-1} (\mathbf{a}' \overline{\mathbf{y}})$ is the square of $t = \overline{d}/(s_d/\sqrt{n})$.
- 5.5 $\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{1}{n} \sum_{i=1}^{n} (y_i x_i) = \frac{1}{n} \sum_i y_i \frac{1}{n} \sum_i x_i = \overline{y} \overline{x},$ $s_d^2 = \frac{1}{n-1} \sum_{i=1}^{n} (d_i \overline{d})^2 = \frac{1}{n-1} \sum_i (y_i x_i \overline{y} + \overline{x})^2$ $= \frac{1}{n-1} \sum_i [(y_i \overline{y}) (x_i \overline{x})]^2$

When this is expanded, we obtain $s_d^2 = s_v^2 + s_x^2 - 2s_{vx}$.

- **5.6** The solution is similar to that for Problem 5.1.
- **5.7** By (5.7), $[(\nu p + 1)/\nu_p]T_{p,\nu}^2 = F_{p,\nu-p+1}$. By (5.29), $(\nu q)(T_{p+q}^2 T_p^2)/(\nu + T^2)$ is $T_{q,\nu-p}^2$. Replacing p by q and ν by νp in (5.7), we see that $\frac{(\nu-p)-q+1}{(\nu-p)q}(\nu-p)\frac{T_{p+q}^2-T_p^2}{\nu+T_p^2}$ is $F_{q,(\nu-p)-q+1}$.
- **5.9** Under H_{03} , we have $C\mu_1 = 0$ and $C\mu_2 = 0$. Then

$$E(\mathbf{C}\overline{\mathbf{y}}) = \mathbf{C}E(\overline{\mathbf{y}}) = \mathbf{C}E\left(\frac{n_1\overline{\mathbf{y}}_1 + n_2\overline{\mathbf{y}}_2}{n_1 + n_2}\right) = \frac{n_1\mathbf{C}\boldsymbol{\mu}_1 + n_2\mathbf{C}\boldsymbol{\mu}_2}{n_1 + n_2} = \mathbf{0}.$$

Since $\overline{\mathbf{y}}_1$ and $\overline{\mathbf{y}}_2$ are independent,

$$cov(\overline{\mathbf{y}}) = cov\left(\frac{n_1\overline{\mathbf{y}}_1 + n_2\overline{\mathbf{y}}_2}{n_1 + n_2}\right) = \frac{n_1^2 \mathbf{\Sigma}/n_1 + n_2^2 \mathbf{\Sigma}/n_2}{(n_1 + n_2)^2}
= \frac{(n_1 + n_2)\mathbf{\Sigma}}{(n_1 + n_2)^2}.$$

- **5.10** $CS_{pl}C'/(n_1 + n_2)$ is the sample covariance matrix of $C\overline{y}$. Hence the equation immediately above (5.39) exhibits the characteristic form of the T^2 -distribution.
- **5.11** $T^2 = .061$
- **5.12** (a) $T^2 = 85.3327$
 - **(b)** $t_1 = 2.5039, t_2 = .2665, t_3 = -2.5157, t_4 = .9510, t_5 = .3161$
- **5.13** $T^2 = 30.2860$
- **5.14** (a) $T^2 = 1.8198$
 - (b) $t_1 = 1.1643$, $t_2 = 1.1006$, $t_3 = .9692$, $t_4 = .7299$. None of these is significant. In fact, ordinarily they would not have been examined because the T^2 -test in part (a) did not reject H_0 .
- **5.15** $T^2 = 79.5510$
- **5.16** (a) $T^2 = 133.4873$
 - **(b)** $t_1 = 3.8879, t_2 = -3.8652, t_3 = -5.6911, t_4 = -5.0426$
 - (c) $\mathbf{a}' = (.345, -.130, -.106, -.143)$
 - (d) $T^2 = 133.4873$
 - (e) $R^2 = .782975$, $T^2 = 133.4873$
 - (f) By (5.32), $t^2(y_1|y_2, y_3, y_4) = 35.9336$, $t^2(y_2|y_1, y_3, y_4) = 5.7994$, $t^2(y_3|y_1, y_2, y_4) = 1.7749$, $t^2(y_4|y_1, y_2, y_3) = 8.2592$
 - (g) By (5.29), $T^2(y_3, y_4|y_1, y_2) = 12.5206$, $F(y_3, y_4|y_1, y_2) = 6.0814$
- **5.17** By (5.34), the test for parallelism gives $T^2 = 132.6863$. The discriminant function coefficient vector is given by (5.35) as $\mathbf{a}' = (-.362, -.223, -.137)$.
- **5.18** (a) $T^2 = 66.6604$
 - **(b)** $t_1 = -.6556$, $t_2 = 2.6139$, $t_3 = -3.2884$, $t_4 = -4.6315$, $t_5 = 1.8873$, $t_6 = -3.2205$
 - (c) By (5.32),

$$t^{2}(y_{1}|y_{2}, y_{3}, y_{4}, y_{5}, y_{6}) = .0758,$$
 $t^{2}(y_{2}|y_{1}, y_{3}, y_{4}, y_{5}, y_{6}) = 6.4513,$ $t^{2}(y_{3}|y_{1}, y_{2}, y_{4}, y_{5}, y_{6}) = 6.9518,$ $t^{2}(y_{4}|y_{1}, y_{2}, y_{3}, y_{5}, y_{6}) = 6.0309,$ $t^{2}(y_{5}|y_{1}, y_{2}, y_{3}, y_{4}, y_{6}) = 3.7052,$ $t^{2}(y_{6}|y_{1}, y_{2}, y_{3}, y_{4}, y_{5}) = 6.2619.$

(d) By (5.29), $T^2(y_4, y_5, y_6|y_1, y_2, y_3) = 27.547$.

10.1002.0471271357.app2. Downloaded from https://online library.wiley.com/doi/10.1002.0471271357.app2 by Inaq Himari NPL, Wiley Online Library on [2201/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/erms-und-conditions) on Wiley Online Library for rules of use; OA uritcles as governed by the applicable Creative Common License

5.19 (a)
$$T^2 = 70.5679$$

(b)
$$T^2(y_5, y_6|y_3, y_4) = 13.1517$$

(c)
$$T^2(y_1, y_2|y_3, y_4, y_5, y_6) = 8.5162$$

5.20 (a)
$$T^2 = 18.4625$$

(b)
$$\mathbf{a}' = (-.057, -.010, -.242, -.071)$$

(c) By (5.32),

$$t^{2}(y_{1}|y_{2}, y_{3}, y_{4}) = 3.3315,$$
 $t^{2}(y_{2}|y_{1}, y_{3}, y_{4}) = .0102,$ $t^{2}(y_{3}|y_{1}, y_{2}, y_{4}) = 1.4823,$ $t^{2}(y_{4}|y_{1}, y_{2}, y_{3}) = .0013.$

5.21 (a)
$$T^2 = 15.1912$$

(b)
$$\mathbf{a}' = (-.036, .048)$$

(c)
$$t_1 = -3.8371, t_2 = -2.4362$$

5.22
$$T^2 = 22.3238$$

5.23 (a)
$$T^2 = 206.1188$$

(b)
$$t^2(d_1|d_2, d_3) = 59.0020, t^2(d_2|d_1, d_3) = 53.4507, t^2(d_3|d_1, d_2) = 80.9349$$

CHAPTER 6

6.1 (a) Using $\overline{y}_i = y_i/n$, we have

$$\sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{i.})^{2} = \sum_{ij} (y_{ij}^{2} - 2y_{ij}\overline{y}_{i.} + \overline{y}_{i.}^{2})$$

$$= \sum_{ij} y_{ij}^{2} - \sum_{i} \overline{y}_{i.} \sum_{j} y_{ij} + n \sum_{i} \overline{y}_{i.}^{2}$$

$$= \sum_{ij} y_{ij}^{2} - 2 \sum_{i} \frac{y_{i.}}{n} y_{i.} + n \sum_{i} \left(\frac{y_{i.}}{n}\right)^{2}$$

$$= \sum_{ij} y_{ij}^{2} - 2 \sum_{i} \frac{y_{i.}^{2}}{n} + \sum_{i} \frac{y_{i.}^{2}}{n}.$$

6.2
$$\frac{|\mathbf{E}^{-1}||\mathbf{E}|}{|\mathbf{E}^{-1}||\mathbf{E} + \mathbf{H}|} = \frac{|\mathbf{E}^{-1}\mathbf{E}|}{|\mathbf{E}^{-1}(\mathbf{E} + \mathbf{H})|} = \frac{|\mathbf{I}|}{|\mathbf{I} + \mathbf{E}^{-1}\mathbf{H}|} = \frac{1}{\prod_{i=1}^{s} (1 + \lambda_i)};$$
 see Section 2.11.2.

6.3
$$(\mathbf{E}^{-1}\mathbf{H} - \lambda \mathbf{I})\mathbf{a} = \mathbf{0}$$

 $[(\mathbf{E}^{1/2}\mathbf{E}^{1/2})^{-1}\mathbf{H} - \lambda \mathbf{I}]\mathbf{a} = \mathbf{0}$
 $[(\mathbf{E}^{1/2})^{-1}(\mathbf{E}^{1/2})^{-1}\mathbf{H} - \lambda \mathbf{I}]\mathbf{a} = \mathbf{0}$
 $[(\mathbf{E}^{1/2})^{-1}\mathbf{H} - \lambda \mathbf{E}^{1/2}]\mathbf{a} = \mathbf{0}$
 $[(\mathbf{E}^{1/2})^{-1}\mathbf{H} - \lambda \mathbf{E}^{1/2}](\mathbf{E}^{1/2})^{-1}\mathbf{E}^{1/2}\mathbf{a} = \mathbf{0}$
 $[(\mathbf{E}^{1/2})^{-1}\mathbf{H}(\mathbf{E}^{1/2})^{-1} - \lambda \mathbf{I}]\mathbf{E}^{1/2}\mathbf{a} = \mathbf{0}$

6.4 We need to show that $(2N+s+1)/(2m+s+1) = (\nu_E - p + s)/d$. Using the definitions $N = \frac{1}{2}(\nu_E - p - 1), m = \frac{1}{2}(|\nu_H - p| - 1), d = \max(p, \nu_H),$

and $s = \min(p, v_H)$, we have $2N + s + 1 = 2(\frac{1}{2})(v_E - p - 1) + s + 1 = v_E - p - 1 + s + 1 = v_E - p + s$. For the denominator, we have $2m + s + 1 = 2(\frac{1}{2})(|v_H - p| - 1) + s + 1 = |v_H - p| + s$. Suppose $v_H > p$. Then $|v_H - p| + s = v_H - p + p = v_H = d$. On the other hand, if $v_H < p$, then $|v_H - p| + s = p - v_H + v_H = p = d$.

6.5 If $p \le v_H$, we have s = p and $|v_H - p| = v_H - p$. Then (6.30) becomes

$$\begin{split} \frac{2(sN+1)U^{(s)}}{s^2(2m+s+1)} &= \frac{2\left[p\left(\frac{1}{2}\right)(\nu_E-p-1)+1\right]U^{(s)}}{p^2\left[2\left(\frac{1}{2}\right)(\nu_H-p-1)+p+1\right]} \\ &= \frac{\left[p(\nu_E-p-1)+2\right]U^{(s)}}{p^2(\nu_H-p-1+p+1)} \\ &= \frac{\left[p(\nu_E-p-1)+2\right]U^{(s)}}{p^2\nu_H}, \end{split}$$

which is the same as (6.31) because p = s.

- **6.6** When s = 1, we have $V^{(1)} = \lambda_1/(1 + \lambda_1)$, $U^{(1)} = \lambda_1$, $\Lambda = 1/(1 + \lambda_1)$, and $\theta = \lambda_1/(1 + \lambda_1)$. Solving the last of these for λ_1 gives $\lambda_1 = \theta/(1 \theta)$, and the results in (6.34), (6.35), and (6.36) follow immediately.
- **6.7** With $T^2 = (n_1 + n_2 2)U^{(1)}$ and $U^{(1)} = \theta/(1 \theta)$, we obtain (5.19). We obtain (5.18) from (5.19) by $V^{(1)} = \theta$. A similar argument leads to (5.16).
- **6.8** (a) With $\overline{\mathbf{y}}_{i} = \mathbf{y}_{i.}/n_{i}$ and $\overline{\mathbf{y}}_{..} = \mathbf{y}_{..}/N$, we obtain

$$\mathbf{H} = \sum_{i=1}^{k} n_{i} (\overline{\mathbf{y}}_{i.} - \overline{\mathbf{y}}_{..}) (\overline{\mathbf{y}}_{i.} - \overline{\mathbf{y}}_{..})'$$

$$= \sum_{i} n_{i} (\overline{\mathbf{y}}_{i.} \overline{\mathbf{y}}'_{i.} - \overline{\mathbf{y}}_{i.} \overline{\mathbf{y}}'_{..} - \overline{\mathbf{y}}_{..} \overline{\mathbf{y}}'_{i.} + \overline{\mathbf{y}}_{..} \overline{\mathbf{y}}'_{..})$$

$$= \sum_{i} n_{i} \overline{\mathbf{y}}_{i.} \overline{\mathbf{y}}'_{i.} - \left(\sum_{i} n_{i} \overline{\mathbf{y}}_{i.}\right) \overline{\mathbf{y}}'_{..} - \overline{\mathbf{y}}_{..} \sum_{i} n_{i} \overline{\mathbf{y}}'_{i.} + \overline{\mathbf{y}}_{..} \overline{\mathbf{y}}'_{..} \sum_{i} n_{i}$$

$$= \sum_{i} n_{i} \frac{\mathbf{y}_{i.} \mathbf{y}'_{i.}}{n_{i}^{2}} - \frac{\left(\sum_{i} \mathbf{y}_{i.}\right) \mathbf{y}'_{..}}{N} - \frac{\mathbf{y}_{..}}{N} \sum_{i} \mathbf{y}'_{i.} + \frac{N \mathbf{y}_{..} \mathbf{y}'_{..}}{N^{2}}$$

$$= \sum_{i} \frac{\mathbf{y}_{i.} \mathbf{y}'_{i.}}{n_{i}} - \frac{\mathbf{y}_{..} \mathbf{y}'_{..}}{N} - \frac{\mathbf{y}_{..} \mathbf{y}'_{..}}{N} + \frac{\mathbf{y}_{..} \mathbf{y}'_{..}}{N}.$$

6.9 $\overline{\mathbf{y}}_{1.} - \overline{\mathbf{y}}_{..}$ becomes

$$\overline{\mathbf{y}}_{1.} - \frac{n_1 \overline{\mathbf{y}}_{1.} + n_2 \overline{\mathbf{y}}_{2.}}{n_1 + n_2} = \frac{n_1 \overline{\mathbf{y}}_{1.} + n_2 \overline{\mathbf{y}}_{1.} - n_1 \overline{\mathbf{y}}_{1.} - n_2 \overline{\mathbf{y}}_{2.}}{n_1 + n_2} = \frac{n_2 (\overline{\mathbf{y}}_{1.} - \overline{\mathbf{y}}_{2.})}{n_1 + n_2}.$$

The first term in the sum is

$$\frac{n_1 n_2^2}{(n_1 + n_2)^2} (\overline{\mathbf{y}}_{1.} - \overline{\mathbf{y}}_{2.}) (\overline{\mathbf{y}}_{1.} - \overline{\mathbf{y}}_{2.})'.$$

The second term in the sum is

$$\frac{n_1^2 n_2}{(n_1 + n_2)^2} (\overline{\mathbf{y}}_{1.} - \overline{\mathbf{y}}_{2.}) (\overline{\mathbf{y}}_{1.} - \overline{\mathbf{y}}_{2.})'.$$

6.10
$$\theta = \frac{\lambda_1}{1 + \lambda_1} = \frac{\text{SSH}(z)/\text{SSE}(z)}{1 + \text{SSH}(z)/\text{SSE}(z)} = \frac{\text{SSH}(z)}{\text{SSE}(z) + \text{SSH}(z)}$$

- **6.11** From $r_i^2 = \lambda_i/(1+\lambda_i)$, obtain $\lambda_i = r_i^2/(1-r_i^2)$. Substitute this into $1/(1+\lambda_i)$ to obtain the result.
- **6.12** Substitute $A_P = V^{(s)}/s$ into (6.50) to obtain (6.26).
- **6.13** When s = 1, (6.51) becomes

$$A_{\rm LH} = \frac{U^{(1)}}{1 + U^{(1)}}.$$

By (6.34), $U^{(1)} = \lambda_1$.

- **6.14** Substitute $A_{LH} = U^{(s)}/(s + U^{(s)})$ from (6.51) into (6.52) to obtain F_3 in (6.31).
- **6.15** To show $cov(c_i \overline{y}_i) = c_i^2 \Sigma / n$, use (3.74), $cov(Ay) = A\Sigma A'$, with $A = c_i I$.
- **6.16** By (6.9),

$$\mathbf{H}_{z} = n \sum_{i=1}^{k} (\overline{\mathbf{z}}_{i.} - \overline{\mathbf{z}}_{..}) (\overline{\mathbf{z}}_{i.} - \overline{\mathbf{z}}_{..})'$$

$$= n \sum_{i} (\mathbf{C}\overline{\mathbf{y}}_{i.} - \mathbf{C}\overline{\mathbf{y}}_{..}) (\mathbf{C}\overline{\mathbf{y}}_{i.} - \mathbf{C}\overline{\mathbf{y}}_{..})'$$

$$= n \sum_{i} [\mathbf{C}(\overline{\mathbf{y}}_{i.} - \overline{\mathbf{y}}_{..})] [\mathbf{C}(\overline{\mathbf{y}}_{i.} - \overline{\mathbf{y}}_{..})]'$$

$$= n \mathbf{C} \left[\sum_{i} (\overline{\mathbf{y}}_{i.} - \overline{\mathbf{y}}_{..}) (\overline{\mathbf{y}}_{i.} - \overline{\mathbf{y}}_{..})' \right] \mathbf{C}' \qquad [by (2.45)]$$

6.17 C is not square.

6.18
$$E(\mathbf{C}\overline{\mathbf{y}}..) = \mathbf{C}E(\overline{\mathbf{y}}..) = \mathbf{C}E(\sum_{i=1}^{k} \overline{\mathbf{y}}_{i.}/k)$$

 $= \mathbf{C}\sum_{i} E(\overline{\mathbf{y}}_{i.})/k = \mathbf{C}\sum_{i} \mu_{i}/k$
 $= \mathbf{0}$ [by H_{03} in (6.83)]

 $cov(C\overline{y}..) = C\Sigma C'/kn$ if there are no differences in the group means, $C\mu_1$, $C\mu_2, ..., C\mu_k$. This condition is assured by H_{01} in (6.78).

10.10020471271357.app2, Dwnloaded from thtc//caline library viely, com/doi/10.1020471271357.app2 by Inag Himarl NPL, Wiley Online Library on [22012/023]. See the Terra and Conditions (thps://onlinelibrary-wiley, comberns-and-conditions) on Wiley Online Library for rules of use; OA articles as governed by the applicable Creater Common Licenses

- **6.19** For our purposes, it will suffice to show that T^2 has the characteristic form of the T^2 -distribution in (5.6).
- **6.20** If $\Sigma = \sigma^2 \mathbf{I}$, (6.89) becomes

$$\varepsilon = \frac{[\operatorname{tr}(\sigma^2 \mathbf{I} - \mathbf{J}\sigma^2 \mathbf{I}/p)]^2}{(p-1)\operatorname{tr}(\sigma^2 \mathbf{I} - \mathbf{J}\sigma^2 \mathbf{I}/p)^2} = \frac{[\sigma^2 \operatorname{tr}(\mathbf{I} - \mathbf{J}/p)]^2}{\sigma^4 (p-1)\operatorname{tr}(\mathbf{I} - \mathbf{J}/p)^2}.$$

Show that $(\mathbf{I} - \mathbf{J}/p)^2 = \mathbf{I} - \mathbf{J}/p$. Then

$$\varepsilon = \frac{\sigma^4 (p - p/p)^2}{\sigma^4 (p - 1)(p - p/p)} = \frac{(p - 1)^2}{(p - 1)^2} = 1.$$

- **6.21** The (univariate) expected mean square corresponding to $\overline{\mu}$. in a one-way ANOVA is $\sigma^2 + N\mu^2$. Thus the mean square for $\overline{\mu}$ is tested with MSE. The corresponding multivariate test therefore uses \mathbf{H}^* and \mathbf{E} .
- **6.22** From (6.105) we have

$$\Lambda = \frac{|\mathbf{A}\mathbf{E}\mathbf{A}'|}{|\mathbf{A}(\mathbf{E} + \mathbf{H}^*)\mathbf{A}'|} = \frac{|\mathbf{A}\mathbf{E}\mathbf{A}'|}{|\mathbf{A}\mathbf{E}\mathbf{A}' + \mathbf{A}\mathbf{H}^*\mathbf{A}'|}.$$

Substitute $\mathbf{H}^* = kn\overline{\mathbf{y}}..\overline{\mathbf{y}}'..$ to obtain

$$\Lambda = \frac{|\mathbf{A}\mathbf{E}\mathbf{A}'|}{|\mathbf{A}\mathbf{E}\mathbf{A}' + \sqrt{kn}\mathbf{A}\mathbf{\bar{y}}..(\sqrt{kn}\mathbf{A}\mathbf{\bar{y}}..)'|}.$$

Now use (2.95) with $\mathbf{B} = \mathbf{A}\mathbf{E}\mathbf{A}'$ and $\mathbf{c} = \sqrt{kn}\mathbf{A}\mathbf{\bar{y}}$.. to obtain

$$\Lambda = \frac{1}{1 + kn(\mathbf{A}\overline{\mathbf{y}}..)'(\mathbf{A}\mathbf{E}\mathbf{A}')^{-1}(\mathbf{A}\overline{\mathbf{y}}..)}.$$

Multiply and divide by v_E and use (6.101) to obtain (6.106).

- **6.23** Solve for T^2 in (6.106).
- **6.24** In C_1B' the rows of C_1 are multiplied by the rows of **B**. Show that $C_1B' = \mathbf{O}$.
- **6.25** As noted, the function $(\overline{\mathbf{y}} \mathbf{A}\hat{\boldsymbol{\beta}})'\mathbf{S}^{-1}(\overline{\mathbf{y}} \mathbf{A}\hat{\boldsymbol{\beta}})$ is similar to SSE = $(\mathbf{y} \mathbf{X}\hat{\boldsymbol{\beta}})'(\mathbf{y} \mathbf{X}\hat{\boldsymbol{\beta}})$ in (10.4) and (10.6). By an argument similar to that used in Section 10.2.2 to obtain $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$, it follows that $\hat{\boldsymbol{\beta}} = (\mathbf{A}'\mathbf{S}^{-1}\mathbf{A})^{-1}\mathbf{A}'\mathbf{S}^{-1}\overline{\mathbf{y}}$. An alternative approach (for those familiar with differentiation with respect to a vector) is to expand $(\overline{\mathbf{y}} \mathbf{A}\hat{\boldsymbol{\beta}})'\mathbf{S}^{-1}(\overline{\mathbf{y}} \mathbf{A}\hat{\boldsymbol{\beta}})$ to four terms, differentiate with respect to $\hat{\boldsymbol{\beta}}$, and set the result equal to $\mathbf{0}$.
- **6.26** Expand $n(\overline{y} A\hat{\beta})'S^{-1}(\overline{y} A\hat{\beta})$ to four terms and substitute

$$\hat{\boldsymbol{\beta}} = (\mathbf{A}'\mathbf{S}^{-1}\mathbf{A})^{-1}\mathbf{A}'\mathbf{S}^{-1}\overline{\mathbf{y}}$$

into the last one.

6.27 (a)
$$\mathbf{E} = \begin{pmatrix} 13.41 & 7.72 & 8.68 & 5.86 \\ 7.72 & 8.48 & 7.53 & 6.21 \\ 8.68 & 7.53 & 11.61 & 7.04 \\ 5.86 & 6.21 & 7.04 & 10.57 \end{pmatrix}$$

$$\mathbf{H} = \begin{pmatrix} 1.05 & 2.17 & -1.38 & -.76 \\ 2.17 & 4.88 & -2.37 & -1.26 \\ -1.38 & -2.37 & 2.38 & 1.38 \\ -.76 & -1.26 & 1.38 & .81 \end{pmatrix},$$

 $\Lambda=.224,$ $V^{(s)}=.860,$ $U^{(s)}=3.08,$ and $\theta=.747.$ All four are significant.

- **(b)** $\eta_{\Lambda}^2 = 1 \Lambda = .776, \, \eta_{\theta}^2 = \theta = .747, \, A_{\Lambda} = 1 \Lambda^{1/s} = .526, \, A_{\text{LH}} = .606, \, A_P = V^{(s)}/s = .430$
- (c) The eigenvalues of ${\bf E}^{-1}{\bf H}$ are 2.9515 and .1273. The essential dimensionality of the space of the mean vectors is 1.
- (d) For 1, 2 vs. 3 we have $\Lambda = .270$, $V^{(s)} = .730$, $U^{(s)} = 2.702$, and $\theta = .730$. All four are significant. For 1 vs. 2 we obtain $\Lambda = .726$, $V^{(s)} = .274$, $U^{(s)} = .377$, and $\theta = .274$. All four are significant.
- (e) Variable y_1 y_2 y_3 y_4 F 1.29 9.50 3.39 1.27

The F's for y_2 and y_3 are significant. For the discriminant function $z = \mathbf{a}'\mathbf{y}$, where \mathbf{a} is the first eigenvector of $\mathbf{E}^{-1}\mathbf{H}$, we have $\mathbf{a}' = (-.032, -.820, .533, .208)$. Again y_2 and y_3 contribute most to separation of groups.

- (f) By (6.127), $\Lambda(y_3, y_4|y_1, y_2) = \Lambda(y_1, y_2, y_3, y_4)/\Lambda(y_1, y_2) = .224/.568 = .395 < \Lambda_{.05} = .725.$
- (**g**) By (6.128),

$$\begin{split} \Lambda(y_1|y_2,\,y_3,\,y_4) &= \Lambda(y_1,\,y_2,\,y_3,\,y_4)/\Lambda(y_2,\,y_3,\,y_4) \\ &= .224/.240 = .934 > \Lambda_{.05} = .819, \\ \Lambda(y_2|y_1,\,y_3,\,y_4) &= .224/.538 = .417 < .819, \\ \Lambda(y_3|y_1,\,y_2,\,y_4) &= .224/.369 = .609 < .819, \\ \Lambda(y_4|y_1,\,y_2,\,y_3) &= .224/.243 = .924 > .819. \end{split}$$

6.28 (a) S effect: $\Lambda = .00065$, $V^{(s)} = 2.357$, $U^{(s)} = 142.304$, $\theta = .993$. All are significant.

V effect: $\Lambda = .065, V^{(s)} = 1.107, U^{(s)} = 11.675, \theta = .920.$ All are significant.

SV interaction: $\Lambda = .138$, $V^{(s)} = 1.321$, $U^{(s)} = 3.450$, $\theta = .726$. All are significant.

- **(b)** Contrast on *V* comparing 2 vs. 1, 3: $\Lambda = .0804$, $V^{(s)} = .920$, $U^{(s)} = 11.445$, $\theta = .920$. All are significant.
- (c) Linear contrast for S: $\Lambda = .0073$, $V^{(S)} = .993$, $U^{(s)} = 135.273$, $\theta = .993$. All are significant.

Quadratic contrast for S: $\Lambda = .168$, $V^{(s)} = .832$, $U^{(s)} = 4.956$, $\theta = .832$. All are significant.

Cubic contrast for S: $\Lambda = .325$, $V^{(s)} = .675$, $U^{(s)} = 2.076$, $\theta = .675$. All are significant.

(d) The ANOVA F's for each variable are as follows:

Source	y_1	y_2	y_3	y_4
S	980.21	214.24	876.13	73.91
V	251.22	9.47	14.77	27.12
SV	20.37	2.84	3.44	2.08

All F's are significant except the last one, 2.08.

(e) Test of significance of y_3 and y_4 adjusted for y_1 and y_2 :

$$\frac{S}{\Lambda(y_3, y_4|y_1, y_2)} \frac{S}{.1226} \frac{V}{.9336} \frac{SV}{.6402}$$

(f) Test of significance of each variable adjusted for the other three:

	S	V	SV
$\Lambda(y_1 y_2,y_3,y_4)$.1158	.2099	.3082
$\Lambda(y_2 y_1,y_3,y_4)$.5586	.8134	.7967
$\Lambda(y_3 y_1,y_2,y_4)$.2271	.9627	.7604
$\Lambda(v_4 v_1,v_2,v_3)$.6692	.9795	.8683

6.29 V = velocity (fixed), L = lubricant (random).

V effect (using \mathbf{H}_{VL} for error matrix): $\Lambda = .0492$, $V^{(s)} = .951$, $U^{(s)} = 19.315$, $\theta = .951$. With p = 2, $\nu_H = 1$, and $\nu_E = 3$, $\Lambda_{.05} = .050$, $V_{.05}^{(s)} = .950$, $U_{.05}^{(s)} = T_{.05}^2/\nu_E = 19.00$, $\theta_{.05} = .950$. Thus all four test statistics are significant.

L effect (using **E** for error matrix): $\Lambda = .692$, $V^{(s)} = .314$, $U^{(s)} = .438$, $\theta = .295$. None is significant.

VL interaction (using **E** for error matrix): $\Lambda = .932$, $V^{(s)} = .069$, $U^{(s)} = .073$, $\theta = .061$. None is significant.

6.30	Source	Λ	$V^{(s)}$	$U^{(s)}$	θ	Significant?
	(a) Reagent	.0993	1.126	6.911	.868	Yes
	(b) Contrast 1 vs. 2, 3, 4	.146	.854	5.871	.854	Yes
	Subjects	.00000082	2.847	1091.127	.999	Yes

6.31	P =	proportion of filler.	T	= surface treatment,	F	= filler:
------	-----	-----------------------	---	----------------------	---	-----------

Source	Λ	$V^{(s)}$	$U^{(s)}$	θ	Significant
P	.138	.977	5.441	.841	Yes
T	.080	.920	11.503	.920	Yes
PT	.712	.295	.396	.271	No
F	.019	.980	51.180	.981	Yes
PF	.179	.958	3.835	.784	Yes
TF	.355	.645	1.815	.645	Yes
PTF	.752	.264	.309	.172	No

6.32 A = period; P, T, and F are defined in Problem 6.31:

Source	Λ	$V^{(s)}$	$U^{(s)}$	θ	Significant
\overline{A}	.021	.979	47.099	.979	Yes
AP	.475	.545	1.063	.505	No
AT	.142	.858	6.049	.858	Yes
APT	.777	.228	.282	.208	No
AF	.095	.905	9.486	.905	Yes
APF	.622	.387	.594	.363	No
ATF	.387	.613	1.586	.613	Yes
APTF	.781	.229	.267	.169	No

For the between-subject factors and interactions, we have

Source	df	F	<i>p</i> -Value			
\overline{P}	2	21.79	< .0001			
T	1	78.34	< .0001			
PT	2	1.28	.3143			
F	1	345.04	< .0001			
PF	2	15.79	.0004			
TF	1	5.36	.0392			
PTF	2	.48	.6294			
Error	12					

- **6.33** For parallelism, we use (6.79) to obtain $\Lambda = .2397$. For levels, we use (6.81) and (6.82) to obtain $\Lambda = .9651$ and F = .597. For flatness we use (6.84) to obtain $T^2 = 110.521$.
- **6.34** (a) By (6.90), $T^2 = 20.7420$. By (6.105) or (6.106), $\Lambda = .5655$.
 - (b) For each row \mathbf{c}'_i of \mathbf{C} , we use $T_i^2 = n(\mathbf{c}'_i \overline{\mathbf{y}})'(\mathbf{c}'_i \mathbf{S} \mathbf{c}_i)^{-1} \mathbf{c}'_i \overline{\mathbf{y}}$, as in Example 6.9.2: $T_1^2 = 17.0648$, $T_2^2 = .3238$, $T_3^2 = .2714$. This can also be done by Wilks' Λ using $\Lambda_i = \mathbf{c}'_i \mathbf{E} \mathbf{c}_i / \mathbf{c}'_i (\mathbf{E} + \mathbf{H}^*) \mathbf{c}_i$: $\Lambda_1 = .6127$, $\Lambda_2 = .9882$, $\Lambda_3 = .9900$.
- **6.35** The six variables represent two within-subjects factors: y_1 is A_1B_1 , y_2 is A_1B_2 , y_3 is A_1B_3 , x_1 is A_2B_1 , x_2 is A_2B_2 , and x_3 is A_2B_2 . Using linear and quadratic effects (other orthogonal contrasts could be used), the matrices **A**, **B**, and **G** in

(6.98), (6.99), and (6.100) become

$$\mathbf{A} = (\ 1 \ 1 \ 1 \ -1 \ -1 \ -1 \),$$

$$\mathbf{B} = \left(\ 1 \ 0 \ -1 \ 1 \ 0 \ -1 \),$$

$$\mathbf{G} = \left(\ 1 \ 0 \ -1 \ -1 \ 0 \ 1 \),$$

$$\mathbf{G} = \left(\ 1 \ 0 \ -1 \ -1 \ 0 \ 1 \).$$

Using these in T^2 as given by (6.101), (6.102), and (6.103), we obtain $T_A^2 = 193.0901$, $T_B^2 = 2.8000$, and $T_{AB}^2 = 6.8676$. Using MANOVA tests for the same within-subjects factors, we obtain

Source	Λ	$V^{(s)}$	$U^{(s)}$	θ	Significant?
\overline{A}	.202	.798	3.941	.798	Yes
\boldsymbol{B}	.946	.054	.057	.054	No
AB	.877	.123	.140	.123	Yes

6.36 MANOVA tests for the within-subjects effect *T* (time), and interactions of time with the between-subjects effects *C* (cancer) and *G* (gender):

Source	Λ	$V^{(s)}$	$U^{(s)}$	θ
\overline{T}	.258	.742	2.874	.742
TC	.363	.809	1.299	.444
TG	.929	.071	.077	.071
TCG	.809	.201	.225	.130

ANOVA F-tests for between-subjects factors and interactions:

Source	df	F	<i>p</i> -Value
\overline{C}	5	4.16	.003
G	1	2.69	.107
CG	5	.37	.869

- **6.37** (a) $T^2 = 79.551$
 - **(b)** Using $t_i = \mathbf{c}_i' \overline{\mathbf{y}} / \sqrt{\mathbf{c}_i' \mathbf{S} \mathbf{c}_i / n}$, where \mathbf{c}_i' is the *i*th row of \mathbf{C} , we obtain $t_1 = 7.155$, $t_2 = -.445$, $t_3 = -.105$.
- **6.38** (a) $T^2 = 1712.2201$
 - **(b)** Using $t_i = \mathbf{c}_i' \overline{\mathbf{y}} / \sqrt{\mathbf{c}_i' \mathbf{S} \mathbf{c}_i / n}$, we obtain $t_1 = 332.358$, $t_2 = 54.589$, $t_3 = .056$, $t_4 = 7.637$, $t_5 = 4.344$, $t_6 = 1.968$.
- **6.39** (a) Using $T^2 = N(\overline{C}\overline{y}_{..})'(\overline{C}S_{pl}C')^{-1}(\overline{C}\overline{y}_{..})$ in (6.122), we obtain $T^2 = 17.582 < T_{.05,3.9}^2 = 27.202$.
 - **(b)** $t_1 = .951$, $t_2 = 1.606$, $t_3 = .127$ [Since the T^2 -test in part (a) did not reject H_0 , these would ordinarily not be calculated.]

- 10 10020471271357 app2, Dwnbondodd from http://online library.inly.com/doi/10 library.inly.com/doi/10
- (c) Using $\Lambda = |\mathbf{CEC'}|/|\mathbf{C(E + H)C'}|$ in (6.124), we obtain $\Lambda = .3107 > \Lambda_{.05,3,2,9} = .203$.
- (d) To compare groups using each row of C, we use $\Lambda_i = \mathbf{c}_i' \mathbf{E} \mathbf{c}_i / \mathbf{c}_i (\mathbf{E} + \mathbf{H}) \mathbf{c}_i$ to obtain $\Lambda_1 = .833$, $\Lambda_2 = .988$, $\Lambda_3 = .650$. [Since the Λ -test in part (c) did not reject H_0 , we would ordinarily not have calculated these.]
- **6.40** (a) Using $T^2 = N(\overline{C}\overline{y}_{..})'(\overline{C}S_{pl}C')^{-1}(\overline{C}\overline{y}_{..})$ in (6.122), we obtain $T^2 = 33.802 > T_{05.4.24}^2 = 12.983$.
 - **(b)** Using $t_i^2 = N(\mathbf{c}_i'\overline{\mathbf{y}})^2/\mathbf{c}_i'\mathbf{S}_{\rm pl}\mathbf{c}_i$, we obtain $t_1^2 = .675$, $t_2^2 = .393$, $t_3^2 = 32.626$. Only the cubic effect is significant.
 - (c) For an overall test comparing groups, we use (6.124),

$$\Lambda = |CEC'|/|C(E + H)C'| = .4361.$$

(d) To compare groups using each row of C, we use

$$\Lambda_i = \mathbf{c}_i' \mathbf{E} \mathbf{c}_i / \mathbf{c}_i' (\mathbf{E} + \mathbf{H}) \mathbf{c}_i : \Lambda_1 = .534, \Lambda_2 = .764, \Lambda_3 = .941.$$

- **6.41** (a) Using $T^2 = N(\overline{C}\overline{y}_{..})'(\overline{C}S_{pl}C')^{-1}(\overline{C}\overline{y}_{..})$ in (6.122), we obtain $T^2 = 45.500$.
 - **(b)** Using $t_i^2 = N(\mathbf{c}_i'\mathbf{\bar{y}})^2/\mathbf{c}_i'\mathbf{S}_{\text{pl}}\mathbf{c}_i$, we obtain $t_1^2 = 18.410$, $t_2^2 = 8.385$, $t_3^2 = 3.446$, $t_4^2 = .011$, $t_5^2 = .098$, $t_6^2 = 2.900$.
 - (c) For an overall test comparing groups, we use (6.124),

$$\Lambda = |CEC'|/|C(E + H)C'| = .304.$$

(d) To compare groups using each row of C, we use

$$\Lambda_i = \mathbf{c}_i' \mathbf{E} \mathbf{c}_i / \mathbf{c}_i' (\mathbf{E} + \mathbf{H}) \mathbf{c}_i : \Lambda_1 = .695, \Lambda_2 = .925, \Lambda_3 = .731,$$

 $\Lambda_4 = .814, \Lambda_5 = .950, \Lambda_6 = .894.$

6.42 (a) Combined groups (pooled covariance matrix). Using t = number of minutes -30, we obtain, by (6.115),

$$\hat{\boldsymbol{\beta}}' = (98.1, .981, .0418, -.00101, -.000048).$$

By (6.116), we obtain $T^2 = .216$. By (6.118), we have

$$\hat{\boldsymbol{\mu}}' = (95.5, 96.7, 95.6, 93.8, 98.1, 99.2).$$

- **(b)** Group 1: $\hat{\boldsymbol{\beta}}_1' = (100.7, .819, .040, -.00085, -.000038), T^2 = .0113, <math>\hat{\boldsymbol{\mu}}_1' = (105.2, 104.4, 101.5, 98.6, 100.6, 108.1)$
- (c) Groups 2–4: $\hat{\boldsymbol{\beta}}_2' = (97.4, 1.010, .0403, -.00103, -.000049), T^2 = .2554, \hat{\boldsymbol{\mu}}_2' = (92.6, 94.4, 93.8, 92.4, 97.4, 96.6)$

$$T^2 = n_1(\mathbf{C}\overline{\mathbf{y}}_1)'(\mathbf{C}\mathbf{S}_1\mathbf{C}')^{-1}(\mathbf{C}\overline{\mathbf{y}}_1) = 554.749.$$

For each row of C (linear, quadratic, etc.), we have

$$t_i^2 = n_1 (\mathbf{c}_i' \overline{\mathbf{y}}_{1.})^2 / \mathbf{c}_i' \mathbf{S}_1 \mathbf{c}_i : t_1^2 = 5.714,$$

 $t_2^2 = 50.111, t_3^2 = 50.767, t_4^2 = 8.011, t_5^2 = .508.$

- **(b)** For the obese group, we obtain $T^2 = n_2(\mathbf{C}\overline{\mathbf{y}}_2)'(\mathbf{C}\mathbf{S}_2\mathbf{C}')^{-1}(\mathbf{C}\overline{\mathbf{y}}_2) = 128.552$. For the five rows of **C**, we obtain $t_1^2 = 4.978$, $t_2^2 = 107.129$, $t_3^2 = 5.225$, $t_4^2 = 10.750$, $t_5^2 = 3.572$.
- (c) For the combined groups $(\mathbf{S}_{pl} = \text{pooled covariance matrix})$, we use $T^2 = N(\mathbf{C}_{\mathbf{y}...}^{\mathsf{v}})'(\mathbf{C}\mathbf{S}_{pl}\mathbf{C}')^{-1}(\mathbf{C}_{\mathbf{y}...}^{\mathsf{v}})$ in (6.122) to obtain $T^2 = 247.0079$. We test for linear, quadratic, etc., trends using the rows of \mathbf{C} in $t_i^2 = N(\mathbf{c}_i'\mathbf{y}_{...}^{\mathsf{v}})^2/\mathbf{c}_i'\mathbf{S}_{pl}\mathbf{c}_i$: $t_1^2 = 1.162$, $t_2^2 = 155.017$, $t_3^2 = 30.540$, $t_4^2 = 1.319$, $t_5^2 = .506$. To compare groups, we use $\Lambda = |\mathbf{C}\mathbf{E}\mathbf{C}'|/|\mathbf{C}(\mathbf{E} + \mathbf{H})\mathbf{C}'|$ in (6.124) and $\Lambda_i = \mathbf{c}_i'\mathbf{E}\mathbf{c}_i/\mathbf{c}_i'(\mathbf{E} + \mathbf{H})\mathbf{c}_i$: $\Lambda = .4902$, $\Lambda_1 = .7947$, $\Lambda_2 = .9940$, $\Lambda_3 = .7987$, $\Lambda_4 = .6228$, $\Lambda_5 = .9172$.
- **6.44** Control group: By (6.115),

$$\hat{\boldsymbol{\beta}}_{1}' = (3.129, .656, -.283, -.334, .192, .037, -.020).$$

By (6.116), $T^2 = .7633$. By (6.118),

$$\hat{\boldsymbol{\mu}}_1' = (\hat{\mu}_{11}, \hat{\mu}_{12}, \dots, \hat{\mu}_{18}) = (4.11, 3.29, 2.71, 2.71, 3.04, 3.39, 3.54, 3.95).$$

Obese group: $\hat{\pmb{\beta}}_2' = (3.207, -.187, .463, .056, -.102, -.010, .010), T^2 = .3943, \hat{\pmb{\mu}}_2' = (4.51, 4.12, 3.81, 3.48, 3.24, 3.37, 3.70, 4.02)$

Combined groups (pooled covariance matrix): $\hat{\boldsymbol{\beta}}' = (3.15, .162, .183, -.115, .012, .010, -.002), T^2 = .0158, \hat{\boldsymbol{\mu}}' = (4.36, 3.80, 3.36, 3.15, 3.13, 3.37, 3.63, 3.98)$

6.45 A = activator, T = time, C = group. In (6.101), (6.102), and (6.103), we use

 $T_A^2 = 5072.579$, $T_T^2 = 268.185$, $T_{AT}^2 = 143.491$. The same within-sample factors and interaction can be tested with Wilks' Λ using (6.105) and the other three MANOVA tests:

Source	Λ	$V^{(s)}$	$U^{(s)}$	θ	Significant?
A	.003	.997	317.04	.997	Yes
T	.056	.944	16.76	.944	Yes
AT	.100	.900	8.97	.900	Yes

The interactions of the within factors with the between factor G are tested with Wilks' Λ (Section 6.9.5) and with the other three MANOVA tests:

Source	Λ	$V^{(s)}$	$U^{(s)}$	θ	Significant?
AC	.884	.116	.131	.116	No
TC	.889	.111	.125	.111	No
ATC	.795	.205	.258	.205	No

The between-subjects factor C is tested with an ANOVA F-test: F = .47, p-value = .504.

CHAPTER 7

7.1 If Σ_0 is substituted for **S** in (7.1), we have

$$u = \nu[\ln |\mathbf{\Sigma}_0| - \ln |\mathbf{\Sigma}_0| + \text{tr}(\mathbf{I}) - p] = \nu[0 + p - p] = 0.$$

7.2
$$\ln |\mathbf{\Sigma}_0| - \ln |\mathbf{S}| = -\ln |\mathbf{\Sigma}_0|^{-1} - \ln |\mathbf{S}|$$

 $= -\ln |\mathbf{\Sigma}_0^{-1}| - \ln |\mathbf{S}|$ [by (2.91)]
 $= -(\ln |\mathbf{S}| + \ln |\mathbf{\Sigma}_0^{-1}|)$
 $= -\ln |\mathbf{S}\mathbf{\Sigma}_0^{-1}|$ [by (2.89)]

7.3
$$-\ln\left(\prod_{i=1}^{p} \lambda_{i}\right) + \sum_{i=1}^{p} \lambda_{i} = -\sum_{i=1}^{p} \ln \lambda_{i} + \sum_{i=1}^{p} \lambda_{i} = \sum_{i=1}^{p} (\lambda_{i} - \ln \lambda_{i})$$

7.4 As noted in Section 7.1, the likelihood ratio in this case involves the ratio of the determinants of the sample covariance matrices under H_0 and H_1 . Under H_1 , which is essentially unrestricted, the maximum likelihood estimate of Σ (corrected for bias) is given by (4.12) as S. Under H_0 it is assumed that each of the p y_i 's in y has variance σ^2 and that all y_i 's are independent. Thus we estimate σ^2 (unbiasedly) in each of the p columns of the p matrix [see (3.17) and (3.23)] and pool the p estimates to obtain

$$\hat{\sigma}^2 = \sum_{i=1}^n \sum_{j=1}^p \frac{(y_{ij} - \overline{y}_j)^2}{(n-1)p}.$$

Show that by (3.22) and (3.23) this is equal to

$$\hat{\sigma}^2 = \sum_{i=1}^p \frac{s_{jj}}{p} = \frac{\operatorname{tr}(\mathbf{S})}{p}.$$

Thus the likelihood ratio is

$$LR = \left(\frac{|\mathbf{S}|}{|\hat{\sigma}^2 \mathbf{I}|}\right)^{n/2} = \left(\frac{|\mathbf{S}|}{|\mathbf{I}\operatorname{tr}(\mathbf{S})/p|}\right)^{n/2}.$$

Show that by (2.85) this becomes

$$LR = \left(\frac{|\mathbf{S}|}{(\operatorname{tr}\mathbf{S}/p)^p}\right)^{n/2}.$$

7.5 If $\lambda_1 = \lambda_2 = \cdots = \lambda_p = \lambda$, say, then by (7.5),

$$u = \frac{p^p \prod_{i=1}^p \lambda_i}{\left(\sum_{i=1}^p \lambda_i\right)^p} = \frac{p^p \lambda^p}{(p\lambda)^p} = 1.$$

$$7.6 \quad [(1-\rho)\mathbf{I} + \rho\mathbf{J}] = \begin{pmatrix} 1-\rho & 0 & \dots & 0 \\ 0 & 1-\rho & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1-\rho \end{pmatrix} + \begin{pmatrix} \rho & \rho & \dots & \rho \\ \rho & \rho & \dots & \rho \\ \vdots & \vdots & & \vdots \\ \rho & \rho & \dots & \rho \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \rho & \dots & \rho \\ \rho & 1 & \dots & \rho \\ \vdots & \vdots & & \vdots \\ \rho & \rho & \dots & 1 \end{pmatrix}$$

7.7 (a) Substitute $\mathbf{J} = \mathbf{j}\mathbf{j}'$ and $\mathbf{x} = \mathbf{j}$ into $\mathbf{J}\mathbf{x} = \lambda\mathbf{x}$ to obtain $\mathbf{j}\mathbf{j}'\mathbf{j} = \lambda\mathbf{j}$, which gives $p\mathbf{j} = \lambda\mathbf{j}$.

(b)
$$\mathbf{S}_0 = s^2[(1-r)\mathbf{I} + r\mathbf{J}] = s^2(1-r)\left(\mathbf{I} + \frac{r}{1-r}\mathbf{J}\right)$$

(c) By (2.85) and (2.108), we have

$$|\mathbf{S}_{0}| = \left| s^{2} (1-r) \left(\mathbf{I} + \frac{r}{1-r} \mathbf{J} \right) \right| = (s^{2})^{p} (1-r)^{p} \left| \mathbf{I} + \frac{r}{1-r} \mathbf{J} \right|$$

$$= (s^{2})^{p} (1-r)^{p} \prod_{i=1}^{p} (1+\lambda_{i}) = (s^{2})^{p} (1-r)^{p} \left(1 + \frac{rp}{1-r} \right)$$

$$= (s^{2})^{p} (1-r)^{p-1} (1-r+rp) = (s^{2})^{p} (1-r)^{p-1} [1+(p-1)r].$$

7.8
$$M = \frac{|\mathbf{S}_1|^{\nu_1/2}|\mathbf{S}_2|^{\nu_2/2}\cdots|\mathbf{S}_k|^{\nu_k/2}}{|\mathbf{S}|^{\sum_i \nu_i/2}} = \frac{|\mathbf{S}_1|^{\nu_1/2}|\mathbf{S}_2|^{\nu_2/2}\cdots|\mathbf{S}_k|^{\nu_k/2}}{|\mathbf{S}|^{\nu_1/2}|\mathbf{S}|^{\nu_2/2}\cdots|\mathbf{S}|^{\nu_k/2}}$$

7.9 (a)
$$M = .7015$$
 (b) M

$$M = .0797$$

7.9 (a)
$$M = .7015$$
 (b) $M = .0797$
7.10 $\Lambda = \frac{|\mathbf{S}|}{|\mathbf{S}_{yy}||\mathbf{S}_{xx}|} = \frac{|\mathbf{S}_{xx}||\mathbf{S}_{yy} - \mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}|}{|\mathbf{S}_{yy}||\mathbf{S}_{xx}|}$

$$= |\mathbf{S}_{yy}^{-1}||\mathbf{S}_{yy} - \mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}| \qquad [by (2.91)]$$

$$= |\mathbf{S}_{yy}^{-1}(\mathbf{S}_{yy} - \mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy})| \qquad [by (2.89)]$$

$$= |\mathbf{I} - \mathbf{S}_{yy}^{-1}\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}|$$

$$= \prod_{i=1}^{s} (1 - r_i^2) \qquad [by (2.108)],$$

where the r_i^2 's are the nonzero eigenvalues of $\mathbf{S}_{yy}^{-1}\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}$. It was shown in Section 2.11.2 that $1 - \lambda_i$ is an eigenvalue of $\mathbf{I} - \mathbf{A}$, where λ_i is an eigenvalue

- **7.11** When all $p_i = 1$, we have k = p, and the submatrices in the denominators of (7.33) and (7.34) reduce to $\mathbf{S}_{jj} = s_{jj}, j = 1, 2, ..., p$, and $\mathbf{R}_{jj} = 1, j = 1$, $2, \ldots, p.$
- **7.12** When all $p_i = 1$, we have k = p and

$$a_{2} = p^{2} - \sum_{i=1}^{p} p_{i}^{2} = p^{2} - p, \qquad a_{3} = p^{3} - p,$$

$$c = 1 - \frac{1}{12f\nu} (2a_{3} + 3a_{2})$$

$$= 1 - \frac{1}{6(p^{2} - p)\nu} [2(p^{3} - p) + 3(p^{2} - p)]$$

$$= 1 - \frac{1}{6(p - 1)\nu} [2(p^{2} - 1) + 3(p - 1)]$$

$$= 1 - \frac{1}{6(p - 1)\nu} [2(p - 1)(p + 1) + 3(p - 1)]$$

$$= 1 - \frac{1}{6\nu} [2p + 5].$$

- 7.13 As noted below (7.6), the degrees of freedom for the χ^2 -approximation is the total number of parameters minus the number estimated under H_0 . The number of distinct parameters in Σ is $p + {p \choose 2} = \frac{1}{2}p(p+1)$. The number of parameters estimated under H_0 is p. The difference is $\frac{1}{2}p(p+1) - p = \frac{1}{2}p(p-1)$.
- **7.14** By (7.1) and (7.2), u = 11.094 and u' = 10.668.
- **7.15** By (7.7), u = .0000594. By (7.9), u' = 23.519. For H_0 : $\mathbf{C}\Sigma\mathbf{C}' = \sigma^2\mathbf{I}$, u = 0.000594. .471 and u' = 2.050.
- **7.16** For H_0 : $\Sigma = \sigma^2 \mathbf{I}$, u = .00513 and u' = 131.922. For H_0 : $\mathbf{C} \Sigma \mathbf{C}' = \sigma^2 \mathbf{I}$, u = .129 and u' = 36.278.

10.1002.0471271357.app2. Downloaded from https://online library.wiley.com/doi/10.1002.0471271357.app2 by Inaq Himari NPL, Wiley Online Library on [2201/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/erms-und-conditions) on Wiley Online Library for rules of use; OA uritcles as governed by the applicable Creative Common License

- **7.17** For H_0 : $\Sigma = \sigma^2 \mathbf{I}$, u = .00471 and u' = 136.190. For H_0 : $\mathbf{C}\Sigma\mathbf{C}' = \sigma^2\mathbf{I}$, u = .747 and u' = 7.486.
- **7.18** By (7.16), u' = 6.3323 with 13 degrees of freedom. The *F*-approximation is F = .4802 with 13 and 1147 degrees of freedom.
- **7.19** u' = 21.488, F = 2.511 with 8 and 217 degrees of freedom
- **7.20** u' = 35.795, F = 4.466 with 8 and 4905 degrees of freedom
- **7.21** u = 8.7457, F = .8730 with 10 and 6502 degrees of freedom
- **7.22** $|\mathbf{S}_1| = 2.620 \times 10^{14}$, $|\mathbf{S}_2| = 2.410 \times 10^{14}$, $|\mathbf{S}_{pl}| = 4.368 \times 10^{14}$, u = 17.502, F = .829
- **7.23** $\ln M = -85.965$, u = 156.434, $a_1 = 21$, $a_2 = 17,797$, F = 7.4396
- **7.24** $\ln M = -7.082, u = 10.565, a_1 = 10, a_2 = 1340, F = 1.046$
- **7.25** $\ln M = -8.6062$, u = 14.222, $a_1 = 20$, $a_2 = 3909$, F = .707
- **7.26** $\ln M = -28.917, u = 44.018, a_1 = 50, a_2 = 3238, F = .8625$
- **7.27** $\ln M = -142.435$, u = 174.285, $a_1 = 110$, $a_2 = 2084$, F = 1.448
- **7.28** $|\mathbf{S}| = 1,207, 109.5, |\mathbf{S}_{yy}| = 2385.1, |\mathbf{S}_{xx}| = 1341.9, \Lambda = .3772$
- **7.29** $|\mathbf{S}| = 4.237 \times 10^{13}, |\mathbf{S}_{yy}| = 484,926.6, |\mathbf{S}_{xx}| = 131,406,938, \Lambda = .6650$
- **7.30** $|\mathbf{S}| = 9.676 \times 10^{-8}, |\mathbf{S}_{yy}| = .02097, |\mathbf{S}_{xx}| = 9.94 \times 10^{-6}, \Lambda = .4642$
- **7.31** $|\mathbf{S}| = 1.7148 \times 10^{16}$, $|\mathbf{S}_{11}| = 11$, 284.967, $|\mathbf{S}_{22}| = 11,891.15$, $|\mathbf{S}_{33}| = 25,951.605$, $s_{44} = 22,227.158$, $s_{55} = 214.06$, u = .00103, u' = 274.787, v = 46
- **7.32** $|\mathbf{S}| = 459.96$, $s_{11} = 140.54$, $s_{22} = 72.25$, $s_{33} = .250$, u = .1811, u' = 12.246, f = 3
- **7.33** u = .0001379, u' = 16.297
- **7.34** u = .0005176, u' = 127.367
- **7.35** u = .005071, u' = 131.226

CHAPTER 8

8.1 Using $\mathbf{a} = \mathbf{S}_{\text{pl}}^{-1}(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)$, we obtain

$$\begin{split} \frac{[\mathbf{a}'(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)]^2}{\mathbf{a}'\mathbf{S}_{pl}\mathbf{a}} &= \frac{[(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)'\mathbf{S}_{pl}^{-1}(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)]^2}{(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)'\mathbf{S}_{pl}^{-1}\mathbf{S}_{pl}\mathbf{S}_{pl}^{-1}(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)} \\ &= \frac{[(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)'\mathbf{S}_{pl}^{-1}(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)]^2}{(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)'\mathbf{S}_{pl}^{-1}(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)}. \end{split}$$

- **8.2** You may wish to use the following steps:
 - (i) In Section 5.6.2 the grouping variable w is defined as $n_2/(n_1 + n_2)$ for each observation in group 1 and $-n_1/(n_1 + n_2)$ for group 2. Show that with this formulation, $\overline{w} = 0$.

(ii) Because $\overline{w} = 0$, there is no intercept, and the fitted model becomes

$$\hat{w}_i = b_1(y_{i1} - \overline{y}_1) + b_2(y_{i2} - \overline{y}_2) + \dots + b_p(y_{ip} - \overline{y}_p),$$

$$i = 1, 2, \dots, n_1 + n_2.$$

Denote the resulting matrix of y values corrected for their means as \mathbf{Y}_c and the vector of w's as w. Then the least squares estimate $\mathbf{b} = (b_1, b_2, \dots, b_p)'$ is obtained as

$$\mathbf{b} = (\mathbf{Y}_c' \mathbf{Y}_c)^{-1} \mathbf{Y}_c' \mathbf{w}.$$

Using (2.51), show that

$$\mathbf{Y}_{c}'\mathbf{Y}_{c} = \sum_{i=1}^{2} \sum_{j=1}^{n_{i}} (\mathbf{y}_{ij} - \overline{\mathbf{y}})(\mathbf{y}_{ij} - \overline{\mathbf{y}})'$$

$$= \sum_{i=1}^{2} \sum_{j=1}^{n_{i}} (\mathbf{y}_{ij} - \overline{\mathbf{y}}_{i})(\mathbf{y}_{ij} - \overline{\mathbf{y}}_{i})' + \frac{n_{1}n_{2}}{n_{1} + n_{2}} (\overline{\mathbf{y}}_{1} - \overline{\mathbf{y}}_{2})(\overline{\mathbf{y}}_{1} - \overline{\mathbf{y}}_{2})',$$

where $\overline{\mathbf{y}} = (n_1 \overline{\mathbf{y}}_1 + n_2 \overline{\mathbf{y}}_2)/(n_1 + n_2)$. It will be helpful to write the first sum above as

$$\sum_{j=1}^{n_1} (\mathbf{y}_{1j} - \overline{\mathbf{y}})(\mathbf{y}_{1j} - \overline{\mathbf{y}})' + \sum_{j=1}^{n_2} (\mathbf{y}_{2j} - \overline{\mathbf{y}})(\mathbf{y}_{2j} - \overline{\mathbf{y}})'$$

and add and subtract $\overline{\mathbf{y}}_1$ in the first term and $\overline{\mathbf{y}}_2$ in the second.

(iii) Show that

$$\mathbf{Y}_c'\mathbf{w} = \sum_{i=1}^2 \sum_{j=1}^{n_i} (\mathbf{y}_{ij} - \overline{\mathbf{y}}) w_{ij} = \frac{n_1 n_2}{n_2 + n_2} (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2).$$

Again it will be helpful to sum separately over the two groups.

(iv) From steps (ii) and (iii) we have

$$\mathbf{b} = (\nu \mathbf{S} + k \overline{\mathbf{d}} \overline{\mathbf{d}}')^{-1} k \overline{\mathbf{d}},$$

where $\mathbf{S} = \sum_{ij} (\mathbf{y}_{ij} - \overline{\mathbf{y}}_i) (\mathbf{y}_{ij} - \overline{\mathbf{y}}_i)'/(n_1 + n_2 - 2)$, $\nu = n_1 + n_2 - 2$, $k = n_1 n_2/(n_1 + n_2)$, and $\overline{\mathbf{d}} = \overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2$. Use (2.77) for the inverse of a patterned matrix of the type $\nu \mathbf{S} + k \overline{\mathbf{d}} \overline{\mathbf{d}}'$ to obtain (8.4).

- **8.3** You may want to use the following steps:
 - (i) R^2 is defined as [see (10.30)]

$$R^2 = \frac{\mathbf{b}' \mathbf{Y}_c' \mathbf{w} - n \overline{w}^2}{\mathbf{w}' \mathbf{w} - n \overline{w}^2}.$$

In this case the expression simplifies because $\overline{w} = 0$. Using $\mathbf{Y}'_c \mathbf{w}$ in Problem 8.2(iii), show that $R^2 = \mathbf{b}'(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)$.

(ii) Show that

$$\mathbf{b}'(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2) = \frac{T^2}{n_1 + n_2 - 2 + T^2}.$$

8.4
$$[\mathbf{a}'(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)]^2 = \mathbf{a}'(\overline{\mathbf{y}} - \overline{\mathbf{y}}_2)\mathbf{a}'(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2) = \mathbf{a}'(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)'\mathbf{a}$$

8.5
$$Ha - \lambda Ea = 0$$

$$\mathbf{E}^{-1}(\mathbf{H}\mathbf{a} - \lambda \mathbf{E}\mathbf{a}) = \mathbf{E}^{-1}\mathbf{0}$$

$$\mathbf{E}^{-1}\mathbf{H}\mathbf{a} - \lambda \mathbf{E}^{-1}\mathbf{E}\mathbf{a} = \mathbf{0}$$

$$(\mathbf{E}^{-1}\mathbf{H} - \lambda \mathbf{I})\mathbf{a} = \mathbf{0}$$

8.6 Substituting $a_r^* = s_r a_r$, r = 1, 2, ..., p, into (8.15), we obtain

$$z_{1i} = s_1 a_1 \frac{y_{1i1} - \overline{y}_{11}}{s_1} + s_2 a_2 \frac{y_{1i2} - \overline{y}_{12}}{s_2} + \dots + s_p a_p \frac{y_{1ip} - \overline{y}_{1p}}{s_p}$$

$$= a_1 y_{1i1} + a_2 y_{1i2} + \dots + a_p y_{1ip} - a_1 \overline{y}_{11} - a_2 \overline{y}_{12} - \dots - a_p \overline{y}_{1p}$$

$$= a_1 y_{1i1} + a_2 y_{1i2} + \dots + a_p y_{1ip} - \mathbf{a}' \overline{\mathbf{y}}_1$$

- **8.7** (a) $\mathbf{a}^{*'} = (1.366, -.810, 2.525, -1.463)$
 - **(b)** $t_1 = 5.417, t_2 = 2.007, t_3 = 7.775, t_4 = .688$
 - (c) The standardized coefficients rank the variables in the order y_3 , y_4 , y_1 , y_2 . The *t*-tests rank them in the order y_3 , y_1 , y_2 , y_4 .
 - (d) The partial F's calculated by (8.26) are $F(y_1|y_2, y_3, y_4) = 7.844$, $F(y_2|y_1, y_3, y_4) = 2.612$, $F(y_3|y_1, y_2, y_4) = 40.513$, and $F(y_4|y_1, y_2, y_3) = 9.938$.
- **8.8** (a) $\mathbf{a}' = (.345, -.130, -.106, -.143)$
 - **(b)** $\mathbf{a}^{*'} = (4.137, -2.501, -1.158, -2.068)$
 - (c) $t_1 = 3.888, t_2 = -3.865, t_3 = -5.691, t_4 = -5.043$
 - (e) $F(y_1|y_2, y_3, y_4) = 35.934$, $F(y_2|y_1, y_3, y_4) = 5.799$, $F(y_3|y_1, y_2, y_4) = 1.775$, $F(y_4|y_1, y_2, y_3) = 8.259$

8.9 (a)
$$\mathbf{a}' = (-.145, .052, -.005, -.089, -.007, -.022)$$

(b)
$$\mathbf{a}^{*'} = (-1.016, .147, -.542, -1.035, -.107, -1.200)$$

- (c) $t_1 = -4.655$, $t_2 = .592$, $t_3 = -4.354$, $t_4 = -5.257$, $t_5 = -4.032$, $t_6 = -6.439$
- (e) $F(y_1|y_2, y_3, y_4, y_5, y_6) = 8.081$, $F(y_2|y_1, y_3, y_4, y_5, y_6) = .150$, $F(y_3|y_1, y_2, y_4, y_5, y_6) = .835$, $F(y_4|y_1, y_2, y_3, y_5, y_6) = 8.503$, $F(y_5|y_1, y_2, y_3, y_4, y_6) = .028$, $F(y_6|y_1, y_2, y_3, y_4, y_5) = 9.192$
- **8.10** (a) $\mathbf{a}' = (.057, .010, .242, .071)$
 - **(b)** $\mathbf{a}^{*'} = (1.390, .083, 1.025, .032)$
 - (c) $t_1 = -3.713$, $t_2 = .549$, $t_3 = -3.262$, $t_4 = -.724$
 - (e) $F(y_1|y_2, y_3, y_4) = 3.332$, $F(y_2|y_1, y_3, y_4) = .010$, $F(y_3|y_1, y_2, y_4) = 1.482$, $F(y_4|y_1, y_2, y_3) = .001$
- **8.11** (a) $\mathbf{a}'_1 = (.021, .533, -.347, -.135), \mathbf{a}'_2 = (-.317, .298, .243, -.026)$
 - (b) $\lambda_1/(\lambda_1 + \lambda_2) = .958$, $\lambda_2/(\lambda_1 + \lambda_2) = .042$. Using the methods of Section 8.6.2, we have two tests, the first for significance of λ_1 and λ_2 and the second for significance of λ_2 :

Test	Λ	F	<i>p</i> -Value for <i>F</i>
1	.2245	8.3294	<.0001
2	.8871	1.3157	.2869

- (c) $\mathbf{a}_{1}^{*'} = (.076, 1.553, -1.182, -.439), \mathbf{a}_{2}^{*'} = (-1.162, .869, .828, -.085)$
- (d) $F(y_1|y_2, y_3, y_4) = 1.067$, $F(y_2|y_1, y_3, y_4) = 20.975$, $F(y_3|y_1, y_2, y_4) = 9.630$, $F(y_4|y_1, y_2, y_3) = 1.228$
- (e) In the plot, the first discriminant function separates groups 1 and 2 from group 3, but the second is ineffective in separating group 1 from group 2.
- $\lambda_i / \sum_{i=1}^4 \lambda_i$ 8.12 (a) Eigenvector λ_i .6421 1.8757 $\mathbf{a}'_{1} = (.470, -.263, .653, -.074)$.7907 .2707 $\mathbf{a}_{2}' = (.176, .188, -1.058, 1.778)$.2290 .0784 $\mathbf{a}_{3}' = (-.155, .258, .470, -.850)$ $\mathbf{a}_{4}' = (-3.614, .475, .310, -.479)$.0260 .0089
 - (b) Test of significance of each eigenvalue and those that follow it:

Test	Λ	Approximate <i>F</i>	<i>p</i> -Value for <i>F</i>
1	.1540	4.937	<.0001
2	.4429	3.188	.0006
3	.7931	1.680	.1363
4	.9747	.545	.5839

(c)
$$\mathbf{a}_{1}^{*'} = (.266, -.915, 1.353, -.097), \mathbf{a}_{2}^{*'} = (.100, .654, -2.291, 2.333)$$

 $\mathbf{a}_{3}^{*'} = (-.087, .899, .973, -1.115), \mathbf{a}_{4}^{*'} = (-2.044, 1.654, .643, -.628)$

(d)
$$F(y_1|y_2, y_3, y_4) = .299$$
, $F(y_2|y_1, y_3, y_4) = 1.931$, $F(y_3|y_1, y_2, y_4) = 6.085$, $F(y_4|y_1, y_2, y_3) = 4.659$

- (e) In the plot, the first discriminant function separates groups 1, 4, and 6 from groups 2, 3, and 5. The second function achieves some separation of group 6 from groups 1 and 4 and some separation of group 3 from groups 2 and 5.
- **8.13** Three variables entered the model in the stepwise selection. The summary table is as follows:

Step	Variable Entered	Overall Λ	<i>p</i> -Value	Partial Λ	Partial F	<i>p</i> -Value
1	<i>y</i> ₄	.4086	<.0001	.4086	12.158	<.0001
2	<i>y</i> ₃	.2655	<.0001	.6499	4.418	.0026
3	<i>y</i> ₂	.1599	<.0001	.6022	5.284	.0008

8.14 Summary table:

	Variable					
Step	Entered	Overall A	<i>p</i> -Value	Partial Λ	Partial F	<i>p</i> -Value
1	<i>y</i> ₄	.6392	<.0001	.6392	21.451	<.0001
2	<i>y</i> ₃	.5430	<.0001	.8495	6.554	.0147
3	y_6	.4594	<.0001	.8461	6.549	.0148
4	y_2	.4063	<.0001	.8843	4.578	.0394
5	<i>y</i> ₅	.3639	<.0001	.8957	3.959	.0547

In this case, the fifth variable to enter, y_5 , would not ordinarily be included in the subset. The p-value of .0547 is large in this setting, where several tests are run at each step and the variable with smallest p-value is selected.

8.15 Summary table:

Step	Variable Entered	Overall Λ	<i>p</i> -Value	Partial Λ	Partial F	<i>p</i> -Value
1	<i>y</i> ₂	.6347	.0006	.6347	9.495	.0006
2	V ₃	.2606	<.0001	.4106	22.975	<.0001

CHAPTER 9

9.1
$$\overline{z}_1 - \overline{z}_2 = \mathbf{a}' \overline{\mathbf{y}}_1 - \mathbf{a}' \overline{\mathbf{y}}_2 = \mathbf{a}' (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2) = (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)' \mathbf{S}_{pl}^{-1} (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)$$

9.2
$$\frac{1}{2}(\overline{z}_1 + \overline{z}_2) = \frac{1}{2}(\mathbf{a}'\overline{\mathbf{y}}_1 + \mathbf{a}'\overline{\mathbf{y}}_2) = \frac{1}{2}\mathbf{a}'(\overline{\mathbf{y}}_1 + \overline{\mathbf{y}}_2) = \frac{1}{2}(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)'\mathbf{S}_{pl}^{-1}(\overline{\mathbf{y}}_1 + \overline{\mathbf{y}}_2)$$

9.3 Write (9.7) in the form

$$\frac{f(\mathbf{y}|G_1)}{f(\mathbf{y}|G_2)} > \frac{p_2}{p_1}$$

and substitute $f(\mathbf{y}|G_i) = N_p(\boldsymbol{\mu}_i, \boldsymbol{\Sigma})$ from (4.2) to obtain

$$\frac{f(\mathbf{y}|G_1)}{f(\mathbf{y}|G_2)} = e^{(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)'\boldsymbol{\Sigma}^{-1}\mathbf{y} - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)'\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2)/2} > \frac{p_2}{p_1}.$$

Substitute estimates for μ_1 , μ_2 , and Σ , and take the logarithm of both sides to obtain (9.8). Note that if a > b, then $\ln a > \ln b$.

9.4 Maximizing $p_i f(\mathbf{y}, G_i)$ is equivalent to maximizing $\ln[p_i f(\mathbf{y}|G_i)]$. Use $f(\mathbf{y}|G_i) = N_p(\boldsymbol{\mu}_i, \boldsymbol{\Sigma})$ from (4.2) and take the logarithm to obtain

$$\ln[p_i f(\mathbf{y}|G_i)] = \ln p_i - \frac{1}{2}p\ln(2\pi) - \frac{1}{2}|\Sigma| - \frac{1}{2}(\mathbf{y} - \boldsymbol{\mu}_i)'\Sigma^{-1}(\mathbf{y} - \boldsymbol{\mu}_i).$$

Expand the last term, delete terms common to all groups (terms that do not involve i), and substitute estimators of μ_i and Σ to obtain (9.11).

9.5 Use $f(\mathbf{y}|G_i) = N_p(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$ in $\ln[p_i f(\mathbf{y}|G_i)]$, delete $-(p/2)\ln(2\pi)$, and substitute $\overline{\mathbf{y}}_i$ and \mathbf{S}_i for $\boldsymbol{\mu}_i$ and $\boldsymbol{\Sigma}_i$.

9.6 (a)
$$\mathbf{a}' = (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)' \mathbf{S}_{pl}^{-1} = (.345, -.130, -.106, -.143),$$

 $\frac{1}{2}(\overline{z}_1 + \overline{z}_2) = -15.8054$

Error rate $=\frac{1}{39} = .0256$

(c) Using the k nearest neighbor method with k = 5, we obtain the same classification table as in part (b). With k = 4, two observations are misclassified, and the error rate becomes 2/39 = .0513.

9.7 (a)
$$\mathbf{a}' = (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)' \mathbf{S}_{pl}^{-1} = (-.145, .052, -.005, -.089, -.007, -.022),$$

 $\frac{1}{2}(\overline{z}_1 + \overline{z}_2) = -17.045$

Actual	Number of	Predicted Group		
Group	Observations	1	2	
1	39	37	2	
2	34	8	26	

Error rate = (2 + 8)/73 = .1370

(c) p_1 and p_2 Proportional to Sample Sizes

Actual	Number of	Predicted Group		
Group	Observations	1	2	
1	39	37	2	
2	34	8	26	

Error rate = (2 + 8)/73 = .1370

9.8 (a)
$$\mathbf{a}' = (\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2)' \mathbf{S}_{pl}^{-1} = (-.057, -.010, -.242, -.071),$$

 $\frac{1}{2}(\overline{z}_1 + \overline{z}_2) = -7.9686$

(b) Linear Classification

Actual Group	Number of Observations	Predicted Group	
		1	2
1	9	8	1
2	10	1	9

Error rate =
$$\frac{2}{19}$$
 = .1053

(c) Holdout Method

Actual Group	Number of Observations	Predicted Group	
		1	2
1	9	6	3
2	10	3	7

Error rate = (3 + 3)/19 = .3158

(d) Kernel Density Estimator with h = 2

Actual Group	Number of Observations	Predicted Group	
		1	2
1	9	9	0
2	10	1	9

Error rate
$$= \frac{1}{19} = .0526$$

9.9 (a) _

Actual	Number of	Predicted Group	
Group	Observations	1	2
1	20	18	2
2	20	2	18

Error rate =
$$(2 + 2)/40 = .100$$

(b) Four variables were selected by the stepwise discriminant analysis: y_2 , y_3 , y_4 , and y_6 (see Problem 8.14). With these four variables we obtain the classification table in part (c).

 Actual Group
 Number of Observations
 Predicted Group

 1
 2

 2
 20

 18
 2

 2
 18

 2
 18

Error rate = (2 + 2)/40 = .100. The four variables classified the sample as well as did all six variables in part (a).

9.10 (a) By (9.10),
$$L_i(\mathbf{y}) = \overline{\mathbf{y}}_i' \mathbf{S}_{pl}^{-1} \mathbf{y} - \frac{1}{2} \overline{\mathbf{y}}_i' \mathbf{S}_{pl}^{-1} \overline{\mathbf{y}}_i = \mathbf{c}_i' \mathbf{y} + c_{0i}$$
. The vectors $\begin{pmatrix} c_{0i} \\ \mathbf{c}_i \end{pmatrix}$, $i = 1, 2, 3$, are

Group 1	Group 2	Group 3
-72.77	-65.18	-68.57
.81	2.12	.68
15.15	10.11	2.79
-1.03	24	6.54
10.02	11.06	13.09

(b) Linear Classification

Actual Group	Number of	Predicted Group				
	Observations	1	2	3		
1	12	9	3	0		
2	12	3	7	2		
3	12	0	1	11		

Error rate = (3 + 3 + 2 + 1)/36 = .250

(c) Quadratic Classification

Actual Group	Number of	Predicted Group				
	Observations	1	2	3		
1	12	10	2	0		
2	12	2	8	2		
3	12	0	1	11		

Error rate = (2 + 2 + 2 + 1)/36 = .194

(d) Linear Classification–Holdout Method

Actual	Number of	Predicted Group			
Group	Observations	1	2	3	
1	12	7	5	0	
2	12	4	5	3	
3	12	0	1	11	

Error rate = (5 + 4 + 3 + 1)/36 = .361

(e) k Nearest Neighbor with $k = 5$

Actual	Number of	Predicted Group				
Group	Observations	1	2	3		
1	11	9	2	0		
2	11	2	7	2		
3	12	0	1	11		

Error rate = (2 + 2 + 2 + 1)/34 = .206

9.11 (a) By (9.10), $L_i(\mathbf{y}) = \overline{\mathbf{y}}_i' \mathbf{S}_{pl}^{-1} \mathbf{y} - \frac{1}{2} \overline{\mathbf{y}}_i' \mathbf{S}_{pl}^{-1} \overline{\mathbf{y}}_i = \mathbf{c}_i' \mathbf{y} + c_{0i}$. The vectors $\begin{pmatrix} c_{0i} \\ \mathbf{c}_i \end{pmatrix}$, $i = 1, 2, \ldots, 6$, are

Group 1	Group 2	Group 3	Group 4	Group 5	Group 6
-300.0	-353.2	-328.5	-291.8	-347.5	-315.8
314.6	317.1	324.6	307.3	316.8	311.3
-59.4	-64.0	-65.2	-59.4	-65.8	-63.1
149.6	168.2	154.9	147.7	168.2	160.6
-161.2	-172.6	-150.4	-153.4	-172.9	-175.5

(b) Linear Classification

Actual	Number of	Predicted Group						
Group	Observations	1	2	3	4	5	6	
1	8	5	0	0	1	0	2	
2	8	0	3	2	1	2	0	
3	8	0	0	6	1	1	0	
4	8	3	0	1	4	0	0	
5	8	0	3	1	0	3	1	
6	8	2	0	0	0	2	4	

Correct classification rate = (5 + 3 + 6 + 4 + 3 + 4)/48 = .521Error rate = 1 - .521 = .479

(c) Quadratic Classification

Actual	Number of	Predicted Group						
Group	Observations	1	2	3	4	5	6	
1	8	8	0	0	0	0	0	
2	8	0	7	0	1	0	0	
3	8	1	0	6	0	1	0	
4	8	0	0	1	7	0	0	
5	8	0	3	0	0	4	1	
6	8	2	0	0	0	1	5	

Correct classification rate = (8 + 7 + 6 + 7 + 4 + 5)/48 = .771Error rate = -.771 = .229

Actual	Number of		Predicted Group					
Group	Observations	1	2	3	4	5	6	Ties
1	8	5	0	0	2	0	0	1
2	8	0	4	0	0	1	0	3
3	8	1	0	6	0	1	0	0
4	8	0	0	0	5	0	0	3
5	8	0	1	0	0	6	1	0
6	8	2	0	0	0	0	5	1

Correct classification rate = (5 + 4 + 6 + 5 + 6 + 5)/40 = .775Error rate = 1 - .775 = .225

(e) Normal Kernel with h=1 (For this data set, larger values of h do much worse.)

Actual	Number of	Predicted Group						
Group	Observations	1	2	3	4	5	6	
1	8	8	0	0	0	0	0	
2	8	0	8	0	0	0	0	
3	8	1	0	6	0	1	0	
4	8	1	0	0	7	0	0	
5	8	0	0	0	0	7	1	
6	8	2	0	0	0	0	6	

Correct classification rate = (8 + 8 + 6 + 7 + 7 + 6)/48 = .875Error rate = 1 - .875 = .125

CHAPTER 10

10.1
$$\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} - \begin{pmatrix} \mathbf{x}'_1 \\ \mathbf{x}'_2 \\ \vdots \\ \mathbf{x}'_n \end{pmatrix} \hat{\boldsymbol{\beta}} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} - \begin{pmatrix} \mathbf{x}'_1 \hat{\boldsymbol{\beta}} \\ \mathbf{x}'_2 \hat{\boldsymbol{\beta}} \\ \vdots \\ \mathbf{x}'_n \hat{\boldsymbol{\beta}} \end{pmatrix} = \begin{pmatrix} y_1 - \mathbf{x}'_1 \hat{\boldsymbol{\beta}} \\ y_2 - \mathbf{x}'_2 \hat{\boldsymbol{\beta}} \\ \vdots \\ y_n - \mathbf{x}'_n \hat{\boldsymbol{\beta}} \end{pmatrix}$$

$$\text{By (2.33), } \sum_{i=1}^n (y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}})^2 = (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}).$$

10.2
$$\sum_{i=1}^{n} (y_i - \mu)^2 = \sum_{i=1}^{n} (y_i - \overline{y} + \overline{y} - \mu)^2$$

$$= \sum_{i=1}^{n} (y_i - \overline{y})^2 + 2 \sum_{i=1}^{n} (y_i - \overline{y}) (\overline{y} - \mu) + \sum_{i=1}^{n} (\overline{y} - \mu)^2$$

$$= \sum_{i=1}^{n} (y_i - \overline{y})^2 + (\overline{y} - \mu) \sum_{i=1}^{n} (y_i - \overline{y}) + n(\overline{y} - \mu)^2$$

$$= \sum_{i} (y_i - \overline{y})^2 + n(\overline{y} - \mu)^2 \quad [\text{since } \sum_{i=1}^{n} (y_i - \overline{y}) = 0]$$

10 10020471271357 app2, Dwnbondodd from http://online library.inly.com/doi/10 library.inly.com/doi/10

10.3
$$\sum_{i=1}^{n} (x_{i2} - \overline{x}_2) \overline{y} = \overline{y} \sum_{i=1}^{n} (x_{i2} - \overline{x}_2) = \overline{y} (\sum_{i=1}^{n} x_{i2} - n\overline{x}_2) = \overline{y} (n\overline{x}_2 - n\overline{x}_2)$$

10.4
$$E[\hat{y}_i - E(y_i)]^2 = E[\hat{y}_i - E(\hat{y}_i) + E(\hat{y}_i) - E(y_i)]^2$$

$$= E[\hat{y}_i - E(\hat{y}_i)]^2 + 2E[\hat{y}_i - E(\hat{y}_i)][E(\hat{y}_i) - E(y_i)]$$

$$+ E[E(\hat{y}_i) - E(y_i)]^2$$

The second term on the right vanishes because $[E(\hat{y}_i) - E(y_i)]$ is constant and $E[\hat{y}_i - E(\hat{y}_i)] = E(\hat{y}_i) - E(\hat{y}_i) = 0$. For the third term, we have $E[E(\hat{y}_i) - E(y_i)]^2 = [E(\hat{y}_i) - E(y_i)]^2$, because $[E(\hat{y}_i) - E(y_i)]^2$ is constant.

- **10.5** First show that $cov(\hat{\boldsymbol{\beta}}_p) = \sigma^2(\mathbf{X}_p'\mathbf{X}_p)^{-1}$. This can be done by noting that $\hat{\boldsymbol{\beta}}_p = (\mathbf{X}_p'\mathbf{X}_p)^{-1}\mathbf{X}_p'\mathbf{y} = \mathbf{A}\mathbf{y}$, say. Then, by (3.74), $cov(\mathbf{A}\mathbf{y}) = \mathbf{A}cov(\mathbf{y})\mathbf{A}' = \mathbf{A}(\sigma^2\mathbf{I})\mathbf{A}' = \sigma^2\mathbf{A}\mathbf{A}'$. By substituting $\mathbf{A} = (\mathbf{X}_p'\mathbf{X}_p)^{-1}\mathbf{X}_p'$, this becomes $cov(\hat{\boldsymbol{\beta}}_p) = \sigma^2(\mathbf{X}_p'\mathbf{X}_p)^{-1}$. Then, by (3.70), $var(\mathbf{x}_{pi}'\hat{\boldsymbol{\beta}}_p) = \mathbf{x}_{pi}'cov(\hat{\boldsymbol{\beta}}_p)\mathbf{x}_{pi}$ and the remaining steps follow as indicated.
- **10.6** By (10.36), $s_p^2 = SSE_p/(n-p)$. Then by (10.44),

$$\begin{split} C_p &= p + (n-p) \frac{s_p^2 - s_k^2}{s_k^2} = p + (n-p) \left(\frac{s_p^2}{s_k^2} - 1 \right) \\ &= p + (n-p) \frac{s_p^2}{s_k^2} - (n-p) = (n-p) \frac{\text{SSE}_p/s_k^2}{n-p} - n + 2p \\ &= \frac{\text{SSE}_p}{s_k^2} - (n-2p). \end{split}$$

10.7 $(Y - X\hat{B})'(Y - X\hat{B}) = Y'Y - Y'X\hat{B} - \hat{B}'X'Y - \hat{B}'X'X\hat{B}$. Transpose $\hat{B} = (X'X)^{-1}X'Y$ from (10.46) and substitute into $\hat{B}'X'X\hat{B}$.

10.8
$$E[\hat{\mathbf{y}}_i - E(\mathbf{y}_i)][\hat{\mathbf{y}}_i - E(\mathbf{y}_i)]' = E[\hat{\mathbf{y}}_i - E(\hat{\mathbf{y}}_i) + E(\hat{\mathbf{y}}_i) - E(\mathbf{y}_i)][\hat{\mathbf{y}}_i - E(\hat{\mathbf{y}}_i)]' + E[\hat{\mathbf{y}}_i - E(\hat{\mathbf{y}}_i)][\hat{\mathbf{y}}_i - E(\hat{\mathbf{y}}_i)]' + E[\hat{\mathbf{y}}_i - E(\hat{\mathbf{y}}_i)][E(\hat{\mathbf{y}}_i) - E(\mathbf{y}_i)]' + E[E(\hat{\mathbf{y}}_i) - E(\mathbf{y}_i)][\hat{\mathbf{y}}_i - E(\hat{\mathbf{y}}_i)]' + E[E(\hat{\mathbf{y}}_i) - E(\mathbf{y}_i)][E(\hat{\mathbf{y}}_i) - E(\mathbf{y}_i)]'$$

The second and third terms are equal to **O** because $[E(\hat{\mathbf{y}}_i) - E(\mathbf{y}_i)]$ is a constant vector and $E[\hat{\mathbf{y}}_i - E(\hat{\mathbf{y}}_i)] = E(\hat{\mathbf{y}}_i) - E(\hat{\mathbf{y}}_i) = \mathbf{0}$. The fourth term is a constant matrix and the first E can be deleted.

10.9 As in Problem 10.5, we have $cov(\hat{\boldsymbol{\beta}}_{p(j)}) = \sigma_{jj}(\mathbf{X}_p'\mathbf{X}_p)^{-1}$, where $\sigma_{jj} = var(y_j)$ is the *j*th diagonal element of $\boldsymbol{\Sigma} = cov(\mathbf{y})$. Similarly, $cov(\hat{\boldsymbol{\beta}}_{p(j)}, \hat{\boldsymbol{\beta}}_{p(k)}) = \sigma_{jk}(\mathbf{X}_p'\mathbf{X}_p)^{-1}$, where $\sigma_{jk} = cov(y_j, y_k)$ is the (jk)th element of $\boldsymbol{\Sigma}$.

The notation $\text{cov}(\hat{\boldsymbol{\beta}}_{p(j)}, \hat{\boldsymbol{\beta}}_{p(k)})$ indicates a matrix containing the covariance of each element of $\hat{\boldsymbol{\beta}}_{p(j)}$ and each element of $\hat{\boldsymbol{\beta}}_{p(k)}$. Now for the covariance matrix, $\text{cov}(\hat{\boldsymbol{y}}_i') = \text{cov}(\mathbf{x}_{pi}'\hat{\boldsymbol{\beta}}_{p(1)}, \dots, \mathbf{x}_{pi}'\hat{\boldsymbol{\beta}}_{p(m)})$, we need the variance of each of the m random variables and the covariance of each pair. By Problem 10.5 and (3.70), $\text{var}(\mathbf{x}_{pi}'\hat{\boldsymbol{\beta}}_{p(1)}) = \mathbf{x}_{pi}' \text{cov}(\hat{\boldsymbol{\beta}}_{p(1)})\mathbf{x}_{pi} = \sigma_{11}\mathbf{x}_{pi}'(\mathbf{X}_p'\mathbf{X}_p)^{-1}\mathbf{x}_{pi}$. Similarly, $\text{cov}(\mathbf{x}_{pi}'\hat{\boldsymbol{\beta}}_{p(1)}, \mathbf{x}_{pi}'\hat{\boldsymbol{\beta}}_{p(2)}) = \sigma_{12}\mathbf{x}_{pi}'(\mathbf{X}_p'\mathbf{X}_p)^{-1}\mathbf{x}_{pi}$. The other variances and covariances can be obtained in an analogous manner.

10.10 By (10.77), $\mathbf{S}_p = \mathbf{E}_p/(n-p)$. Then by (10.83),

$$\mathbf{C}_p = p\mathbf{I} + (n-p)\mathbf{S}_k^{-1}(\mathbf{S}_p - \mathbf{S}_k)$$

$$= p\mathbf{I} + (n-p)\mathbf{S}_k^{-1}\frac{\mathbf{E}_p}{n-p} - (n-p)\mathbf{I}$$

$$= \mathbf{S}_k^{-1}\mathbf{E}_p + (2p-n)\mathbf{I}.$$

10.11 $|\mathbf{E}_k^{-1}\mathbf{E}_p| = |\mathbf{E}_k^{-1}||\mathbf{E}_p| > 0$, because both \mathbf{E}_k^{-1} and \mathbf{E}_p are positive definite.

10.12 By (10.84), $\mathbf{C}_p = \mathbf{S}_k^{-1} \mathbf{E}_p + (2p - n) \mathbf{I}$. Using $\mathbf{S}_k = \mathbf{E}_k / (n - k)$, we obtain

$$\left(\frac{\mathbf{E}_k}{n-k}\right)^{-1}\mathbf{E}_p = \mathbf{C}_p - (2p-n)\mathbf{I},$$
$$(n-k)\mathbf{E}_k^{-1}\mathbf{E}_p = \mathbf{C}_p + (n-2p)\mathbf{I}.$$

10.13 If C_p is replaced by $p\mathbf{I}$ in (10.86), we obtain

$$\mathbf{E}_k^{-1}\mathbf{E}_p = \frac{\mathbf{C}_p + (n-2p)\mathbf{I}}{n-k} = \frac{p\mathbf{I} + n\mathbf{I} - 2p\mathbf{I}}{n-k} = \frac{(n-p)\mathbf{I}}{n-k}.$$

10.14 (a)
$$\hat{\mathbf{B}} = \begin{pmatrix} .6264 & 83.243 \\ .0009 & .029 \\ -.0010 & -.013 \\ .0015 & -.004 \end{pmatrix}$$

- **(b)** $\Lambda = .724, V^{(s)} = .280, U^{(s)} = .375, \theta = .264$
- (c) $\lambda_1 = .3594$, $\lambda_2 = .0160$. The essential rank of $\hat{\mathbf{B}}_1$ is 1, and the power ranking is $\theta > U^{(s)} > \Lambda > V^{(s)}$.
- (d) The Wilks' Λ test of x_2 adjusted for x_1 and x_3 , for example, is given by (10.65) as

$$\Lambda(x_2|x_1, x_3) = \frac{\Lambda(x_1, x_2, x_3)}{\Lambda(x_1, x_3)},$$

which is distributed as $\Lambda_{p,1,n-4}$ and has an exact *F*-transformation. The tests for x_1 and x_3 are similar. For the three tests we obtain the following:

10.15 (a)
$$\hat{\mathbf{B}} = \begin{pmatrix} 34.282 & 35.802 \\ .394 & .245 \\ .529 & .471 \end{pmatrix}$$

- **(b)** $\Lambda = .377, V^{(s)} = .625, U^{(s)} = 1.647, \theta = .622$
- (c) $\lambda_1 = 1.644$, $\lambda_2 = .0029$. The essential rank of $\hat{\mathbf{B}}_1$ is 1, and the power ranking is $\theta > U^{(s)} > \Lambda > V^{(s)}$.

(d)
$$\Lambda$$
 F p-Value
 $x_1|x_2$.888 1.327 .287
 $x_2|x_1$.875 1.506 .245

10.16 (a)
$$\hat{\mathbf{B}} = \begin{pmatrix} 54.870 & 65.679 & 58.106 \\ .054 & -.048 & .018 \\ -.024 & .163 & .012 \\ .107 & -.036 & .125 \end{pmatrix}$$

- **(b)** $\Lambda = .665, V^{(s)} = .365, U^{(s)} = .458, \theta = .240$
- (c) $\lambda_1 = .3159$, $\lambda_2 = .1385$, $\lambda_3 = .0037$. The essential rank of $\hat{\mathbf{B}}_1$ is 2, and the power ranking is $V^{(s)} > \Lambda > U^{(s)} > \theta$.

(d)
$$\Lambda$$
 F p-Value
 $x_1|x_2, x_3$.942 .903 .447
 $x_2|x_1, x_3$.847 2.653 .060
 $x_3|x_1, x_2$.829 3.020 .040

(e)
$$\Lambda$$
 F p-Value
 $y_1|y_2, y_3$.890 1.804 .160
 $y_2|y_1, y_3$.833 2.932 .044
 $y_3|y_1, y_2$.872 2.159 .106

$$\mathbf{10.17 (a) \ \hat{B}} = \begin{pmatrix} -4.140 & 4.935 \\ 1.103 & -.955 \\ .231 & -.222 \\ 1.171 & 1.773 \\ .111 & .048 \\ .617 & -.058 \\ .267 & .485 \\ -.263 & -.209 \\ -.004 & -.004 \end{pmatrix}$$

Test of overall regression of (y_1, y_2) on $(x_1, x_2, ..., x_8)$: $\Lambda = .4642$ (with p = 2, exact F = 1.169, p-value = .332). Tests on subsets (the F's are exact because p = 2):

	Λ	F	<i>p</i> -Value
(b) $x_7, x_8 x_1, x_2, \ldots, x_6$.856	.808	.527
(c) $x_4, x_5, x_6 x_1, x_2, x_3, x_7, x_8$.674	1.457	.218
(d) $x_1, x_2, x_3 x_4, x_5, \ldots, x_8$.569	2.170	.066

10.18 (a) The overall test of (y_1, y_2) on $(x_1, x_2, ..., x_8)$ gives $\Lambda = .4642$, with (exact) F = 1.169 (p-value = .332). Even though this test result is not significant, we give the results of a backward elimination for illustrative purposes:

Partial Λ -Test on Each x_i Using (10.72)								
Step	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
1	.723	.969	.817	.859	.821	.945	.924	.943
2	.741		.801	.851	.839	.948	.927	.940
3	.737		.837	.798	.757		.949	.938
4	.675		.852	.821	.794			.925
5	.680		.861	.835	.817			
6	.701			.805	.806			
7	.855			.930				
8	.891							

At each step, the variable deleted was not significant. In fact, the variable remaining at the last step, x_1 , is not a significant predictor of y_1 and y_2 .

p-Value

.029

(b) There were no significant x's, but to illustrate, we will use the three x's at step 6 and test for each y:

F

3.548

.701

(c)
$$\hat{\mathbf{B}} = \begin{pmatrix} 710.236 & 123.403 \\ -1.625 & .055 \\ 24.648 & .094 \\ -8.622 & -.334 \\ -8.224 & .462 \\ 23.626 & -.110 \\ 2.862 & .427 \\ -16.186 & -.267 \\ -.268 & .014 \\ -1.160 & -.336 \end{pmatrix}$$

$$\Lambda = .102, \ V^{(s)} = 1.236, \ U^{(s)} = 5.475, \ \theta = .827$$

10.20 Using a backward elimination based on (10.72), we obtain the following partial Λ -values:

Step	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
1	.993	.962	.916	.958	.919	.879	.981	.999	.797
2	.994	.962	.916	.956	.909	.874	.980		.626
3		.951	.883	.954	.912	.873	.981		.626
4		.948	.884	.955	.861	.867			.561
5		.953	.862		.840	.803			.561
6			.830		.781	.783			.535

At step 6, we stop and retain all four x's because each Λ has a p-value less than .05.

CHAPTER 11

- **11.1** By (3.38), $\mathbf{S}_{yy} = \mathbf{D}_y \mathbf{R}_{yy} \mathbf{D}_y$ and $\mathbf{S}_{xx} = \mathbf{D}_x \mathbf{R}_{xx} \mathbf{D}_x$, where \mathbf{D}_y and \mathbf{D}_x are defined below (11.14). Similarly, $\mathbf{S}_{yx} = \mathbf{D}_y \mathbf{R}_{yx} \mathbf{D}_x$ and $\mathbf{S}_{xy} = \mathbf{D}_x \mathbf{R}_{xy} \mathbf{D}_y$. Substitute these into (11.7), replace \mathbf{I} by $\mathbf{D}_y^{-1} \mathbf{D}_y$, and factor out \mathbf{D}_y on the right.
- **11.2** Multiply (11.7) by $\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}$ on the left to obtain $(\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{S}_{yy}^{-1}\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy} r^2\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy})\mathbf{a} = \mathbf{0}$. Factor out $\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}$ on the right to write this in the form $(\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{S}_{yy}^{-1}\mathbf{S}_{yx} r^2\mathbf{I})\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{a} = \mathbf{0}$. Upon comparing this to (11.8), we see that $\mathbf{b} = \mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{a}$.
- **11.3** When p = 1, s is also 1, and there is only one canonical correlation, which is equal to R^2 from multiple regression [see comments between (11.28) and (11.29)]. Thus

$$\Lambda = \frac{1 - r_1^2}{1 - c_1^2} = \frac{1 - R_f^2}{1 - R_r^2}.$$

11.4
$$F = \frac{(1-\Lambda)(n-q-1)}{\Lambda h} = \frac{[1-(1-R_f^2)/(1-R_r^2)](n-q-1)}{[(1-R_f^2)/(1-R_r^2)]h}$$

$$= \frac{[1-R_r^2-(1-R_f^2)](n-q-1)}{(1-R_f^2)h}$$

$$= \frac{(R_f^2-R_r^2)(n-q-1)}{(1-R_f^2)h}$$

11.5 By (11.39),

$$r_i^2 = \frac{\lambda_i}{1 + \lambda_i}, \qquad r_i^2 + r_i^2 \lambda_i = \lambda_i, \qquad \lambda_i (1 - r_i^2) = r_i^2.$$

11.6 Substitute $\mathbf{E} = (n-1)(\mathbf{S}_{yy} - \mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy})$ and $\mathbf{H} = (n-1)\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}$ from (11.44) and (11.45) into (11.41):

$$\mathbf{Ha} = \lambda \mathbf{Ea},$$

$$(n-1)\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{a} = (n-1)\lambda(\mathbf{S}_{yy} - \mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy})\mathbf{a},$$

$$\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{a} = \lambda(\mathbf{S}_{yy} - \mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy})\mathbf{a}.$$

11.7 By (11.42), $\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{a} = r^2\mathbf{S}_{yy}\mathbf{a}$. Subtracting $r^2\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{a}$ from both sides gives

$$\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{a} - r^2\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{a} = r^2\mathbf{S}_{yy}\mathbf{a} - r^2\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{a},$$

$$(1 - r^2)\mathbf{S}_{yx}\mathbf{S}_{yx}^{-1}\mathbf{S}_{xy}\mathbf{a} = r^2(\mathbf{S}_{yy} - \mathbf{S}_{yx}\mathbf{S}_{yx}^{-1}\mathbf{S}_{xy})\mathbf{a}.$$

11.8 (a)
$$r_1 = .5142$$
, $r_2 = .1255$

11.9 (a)
$$r_1 = .7885$$
, $r_2 = .0537$

10.1002471721357.app2, Downloaded from http://online library.wiely.com/doi/10.1012/0471271357.app2 by Inag Himari NPL, Wiley Online Library on 12001/2023]. See the Terrans and Conditions (https://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2. Downloaded from http://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2. Downloaded from http://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2. Downloaded from http://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2 by Inag Himari NPL, Wiley Online Library on 12001/2023]. See the Terrans and Conditions (https://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2. Downloaded from http://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2 by Inag Himari NPL, Wiley Online Library on 12001/2023]. See the Terrans and Conditions (https://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2. Downloaded from http://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2. Downloaded from http://onlinelibrary.wiely.com/doi/10.1

11.10 (a)
$$r_1 = .4900, r_2 = .3488, r_3 = .0609$$

11.11 (a)
$$r_1 = .6251, r_2 = .4135$$

(b)
$$\frac{\mathbf{c}_1}{y_1} = \frac{\mathbf{c}_2}{1.120} = -.007$$

 $y_2 = -.498 = 1.003$

	\mathbf{d}_1	\mathbf{d}_2
$\overline{x_1}$	1.091	794
x_2	.184	288
x_3	.842	1.807
x_4	.944	.641
x_5	1.040	154
x_6	.215	1.256
x_7	603	528
x_8	641	588

11.12 (b) By (11.34),

$$\Lambda(x_7, x_8 | x_1, x_2, \dots, x_6) = \frac{\prod_{i=1}^{2} (1 - r_i^2)}{\prod_{i=1}^{2} (1 - c_i^2)},$$

where r_1^2 and r_2^2 are the squared canonical correlations from the full model, and c_1^2 and c_2^2 are the squared canonical correlations from the reduced model:

$$\Lambda(x_7, x_8 | x_1, x_2, \dots, x_6) = \frac{(1 - .6208^2)(1 - .4947^2)}{(1 - .2650^2)(1 - .0886^2)} = \frac{.4643}{.9225} = .5033$$

(c)
$$\Lambda(x_4, x_5, x_6 | x_1, x_2, x_3, x_7, x_8) = \frac{(1 - .6208^2)(1 - .4947^2)}{(1 - .3301^2)(1 - .1707^2)}$$

= $\frac{.4643}{.8651} = .5367$

(d)
$$\Lambda(x_1, x_2, x_3 | x_4, x_5, \dots, x_8) = \frac{(1 - .6208^2)(1 - .4947^2)}{(1 - .4831^2)(1 - .2185^2)}$$

= $\frac{.4643}{.7300} = .6359$

11.13 (a) $r_1 = .9279, r_2 = .5622, r_3 = .1660,$

k	Λ	Approximate F	<i>p</i> -Value
1	.0925	17.9776	<.0001
2	.6651	4.6366	.0020
3	.9725	1.1898	.2816

(b)
$$r_1 = .8770, r_2 = .6776, r_3 = .3488,$$

$k \qquad \Lambda$		Approximate F	<i>p</i> -Value	
1	.1097	6.919	<.0001	
2	.4751	3.427	.001	
3	.8783	1.351	.269	

(c)
$$r_1 = .9095, r_2 = .6395,$$

$k \qquad \Lambda$		Approximate F	<i>p</i> -Value
1	.1022	8.2757	<.0001
2	.5911	3.1129	.0089

(d)
$$r_1 = .9029, r_2 = .7797, r_3 = .3597, r_4 = .3233, r_5 = .0794,$$

k	Λ	Approximate F	<i>p</i> -Value
1	.0561	4.992	<.0001
2	.3037	2.601	.0007
3	.7747	.829	.6210
4	.8898	.761	.6030
5	.9937	.124	.8840

CHAPTER 12

12.1 From $\lambda = \mathbf{a'Sa/a'a}$ in (12.7), we obtain $\lambda \mathbf{a'a} = \mathbf{aSa}$, which can be factored as $\mathbf{a'(Sa - \lambda a)} = 0$. Since $\mathbf{a} = \mathbf{0}$ is not a solution to $\lambda = \mathbf{a'Sa/a'a}$, we have $\mathbf{Sa - \lambda a} = \mathbf{0}$.

12.2
$$|\mathbf{R} - \lambda \mathbf{I}| = 0$$
, $\begin{vmatrix} 1 - \lambda & r \\ r & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 - r^2 = 0$, $(1 - \lambda + r)(1 - \lambda - r) = 0$, $\lambda = 1 \pm r$ With $\lambda_1 = 1 + r$ in $(\mathbf{R} - \lambda_1 \mathbf{I}) \mathbf{a}_1 = \mathbf{0}$, we obtain

$$\begin{pmatrix} -r & r \\ r & -r \end{pmatrix} \begin{pmatrix} a_{11} \\ a_{12} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

which gives $a_{11} = a_{12}$ for any r. Normalizing to $\mathbf{a}'_1 \mathbf{a}_1 = 1$, yields $a_{11} = 1/\sqrt{2}$.

10.10020471271357.app2, Dwnloaded from thtc//caline library wiey, com/doi/10.1020471271357.app2 by Inag Himarl NPL, Wiley Online Library on [2001/2023]. See the Terra and Conditions (thps://onlinelibrary-wiley, comberns-and-conditions) on Wiley Online Library for rules of use; OA articles as governed by the applicable Creater Common Licenses

$$-2 \ln LR = -2 \ln \left(\frac{|\mathbf{S}|}{|\mathbf{S}_0|}\right)^{n/2} = -2 \left(\frac{n}{2}\right) \ln \frac{\prod_{i=1}^{p-k} \lambda_i \prod_{i=p-k+1}^{p} \lambda_i}{\prod_{i=1}^{p-k} \lambda_i \prod_{i=p-k+1}^{p} \overline{\lambda}}$$
$$= -n \ln \frac{\prod_{i=p-k+1}^{p} \lambda_i}{\overline{\lambda}^k} = n \left(k \ln \overline{\lambda} - \sum_{i=p-k+1}^{p} \ln \lambda_i\right).$$

In (12.15), the coefficient n is modified to give an improved chi-square approximation.

12.4 If **S** is diagonal, then $\lambda_i = s_{ii}$, as in (12.17). Thus

$$\mathbf{S}\mathbf{a}_{i} = \lambda_{i}\mathbf{a}_{i} = s_{ii}\mathbf{a}_{i},$$

$$\begin{pmatrix} s_{11} & 0 & \cdots & 0 \\ 0 & s_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & s_{pp} \end{pmatrix} \begin{pmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{ip} \end{pmatrix} = \begin{pmatrix} s_{11}a_{i1} \\ s_{22}a_{i2} \\ \vdots \\ s_{pp}a_{ip} \end{pmatrix} = \begin{pmatrix} s_{ii}a_{i1} \\ s_{ii}a_{i2} \\ \vdots \\ s_{ii}a_{ip} \end{pmatrix}.$$

From the first element, we obtain $s_{11}a_{i1} = s_{ii}a_{i1}$ or $(s_{11} - s_{ii})a_{i1} = 0$. Since $s_{11} - s_{ii} \neq 0$ (unless i = 1), we must have $a_{i1} = 0$. Thus, $\mathbf{a}_i = (0, \dots, 0, a_{ii}, 0, \dots, 0)'$, and normalizing \mathbf{a}_i leads to $a_{ii} = 1$.

12.5 By (10.34) and (12.2),

$$R_{y_{i}|z_{1},...,z_{k}}^{2} = \frac{\mathbf{s}_{y_{i}z}^{\prime}\mathbf{S}_{zz}^{-1}\mathbf{s}_{y_{i}z}}{s_{y_{i}}^{2}}$$

$$= (s_{y_{i}z_{1}}, s_{y_{i}z_{2}}, ..., s_{y_{i}z_{k}}) \begin{pmatrix} s_{z_{1}}^{2} & 0 & \cdots & 0 \\ 0 & s_{z_{2}}^{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & s_{z_{k}}^{2} \end{pmatrix}^{-1} \begin{pmatrix} s_{y_{i}z_{1}} \\ s_{y_{i}z_{2}} \\ \vdots \\ s_{y_{i}z_{k}} \end{pmatrix} / s_{y_{i}}^{2}.$$

Show that this is equal to

$$R_{y_i|z_1,\dots,z_k}^2 = \sum_{j=1}^k \frac{s_{y_i z_j}^2}{s_{z_j}^2 s_{y_i}^2} = \sum_{j=1}^k r_{y_i z_j}^2.$$

12.6 The variances of y_1 , y_2 , x_1 , x_2 , and x_3 on the diagonal of **S** are .016, 70.6, 1106.4, 2381.9, and 2136.4. The eigenvalues of **S** and **R** are as follows:

	S			R	
λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative	λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative
3466.18	.608607	.60861	1.72	.34	.34
1264.47	.222021	.83063	1.23	.25	.59
895.27	.157195	.98782	.96	.19	.78
69.34	.012174	.99999	.79	.16	.94
.01	.000002	1.00000	.30	.06	1.00

Two principal components of **S** account for 83% of the variance, but it requires three principal components of **R** to reach 78%. For most purposes we would use two components of **S**, although with three we could account for 99% of the variance. However, we show all five eigenvectors below because of the interesting pattern they exhibit. The first principal component is largely a weighted average of the last two variables, x_2 and x_3 , which have the largest variances. The second and third components represent contrasts in the last three variables and could be described as "shape" components. The fourth and fifth components are associated uniquely with y_2 and y_1 , respectively. These components are "variable specific," as described in the discussion of method 1 in Section 12.6. As expected, the principal components of **R** show an entirely different pattern. All five variables contribute to the first three components of **R**, whereas in **S**, y_1 and y_2 have small variances and contribute almost nothing to the first three components. The eigenvectors of **S** and **R** are as follows:

	S						R			
	\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5
y_1	.0004	0008	.0018	.0029	.9999	.42	.53	42	40	.46
<i>y</i> ₂	0080	.0166	.0286	.9994	0029	.07	.68	.16	.70	10
x_1	.1547	.6382	.7535	0309	0008	.36	.20	.76	44	24
x_2	.7430	.4279	5145	.0136	.0009	.54	43	.25	.39	.56
x_3	.6511	6397	.4083	.0042	0015	.63	18	40	.10	64

12.7
$$\mathbf{S} = \begin{pmatrix} 65.1 & 33.6 & 47.6 & 36.8 & 25.4 \\ 33.6 & 46.1 & 28.9 & 40.3 & 28.4 \\ 47.6 & 28.9 & 60.7 & 37.4 & 41.1 \\ 36.8 & 40.3 & 37.4 & 62.8 & 31.7 \\ 25.4 & 28.4 & 41.1 & 31.7 & 58.2 \end{pmatrix}$$

$$\mathbf{R} = \begin{pmatrix} 1.00 & .61 & .76 & .58 & .41 \\ .61 & 1.00 & .55 & .75 & .55 \\ .76 & .55 & 1.00 & .61 & .69 \\ .58 & .75 & .61 & 1.00 & .52 \\ .41 & .55 & .69 & .52 & 1.00 \end{pmatrix}$$

10.1002/047/271357_app2, Downloaded from https://calline.library.wiej.ccm/doi/10.102/0471271357.app2 by Iraq Hinari N.L., Wiley Online Library on [22.01/2023]. See the Terms and Conditions (https://onlinelbritary.wiej.com/etmens-ad-conditions) on Wiley Online Library for rules of use; O.A articles are governed by the applicable Creative Common Licenses

	S			R	
λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative	λ_i	$\lambda_i/\sum_j \lambda_i$	Cumulative
200.4	.684	.684	3.42	.683	.683
36.1	.123	.807	.61	.123	.806
34.1	.116	.924	.57	.114	.921
15.0	.051	.975	.27	.054	.975
7.4	.025	1.000	.13	.025	1.000

	S		R			
\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	
.47	58	42	.44	20	68	
.39	11	.45	.45	43	.35	
.49	.10	48	.47	.37	38	
.47	12	.62	.45	39	.33	
.41	.80	09	.41	.70	.41	

The variances in S are nearly identical, and the covariances are likewise similar in magnitude. Consequently, the percent of variance explained by the eigenvalues of S and R are indistinguishable. The interpretation of the second principal component from S is slightly different from that of the second one from R, but otherwise there is little to choose between them.

12.8 The variances on the diagonal of **S** are 95.5, 73.2, 76.2, 808.6, 505.9, and 508.7. The eigenvalues of S and R are as follows:

S			R		
λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative	λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative
1152.0	.557	.557	2.17	.363	.363
394.1	.191	.748	1.08	.180	.543
310.8	.150	.898	.98	.163	.706
97.8	.047	.945	.87	.144	.850
68.8	.033	.978	.55	.092	.942
44.6	.022	1.000	.35	.058	1.000

We could keep either two or three components from S. The first three components of S account for a larger percent of variance than do the first three from \mathbf{R} . The first three eigenvectors of \mathbf{S} and \mathbf{R} are as follows:

S			R		
\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3
.080	.092	069	.336	.176	.497
.034	018	.202	.258	.843	093
.076	.122	011	.370	.049	.466
.758	446	469	.475	329	358
.493	081	.844	.486	.079	567
.412	.878	147	.471	376	.278

As expected, the first three principal components from ${\bf S}$ are heavily influenced by the last three variables because of their relatively large variances.

12.9 The variances on the diagonal of **S** are .69; 5.4; 2,006, 682.4; 90.3; 56.4; 18.1. With the large variance of y_3 , we would expect the first principal component from **S** to account for most of the variance, and y_3 would essentially constitute that single component. This is indeed the pattern that emerges in the eigenvalues and eigenvectors of **S**. The principal components from **R**, on the other hand, are not dominated by y_3 . The eigenvalues of **S** and **R** are as follows:

S				
λ_i	$\lambda_i / \sum_j \lambda_j$	λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative
2,006,760	.999954	2.42	.404	.404
65	.000033	1.40	.234	.638
18	.000009	1.03	.171	.809
7	.000003	.92	.153	.963
3	.000001	.20	.033	.996
0	.000000	.02	.004	1.000

Most of the correlations in ${\bf R}$ are small (only three exceed .3), and its first three principal components account for only 72% of the variance. The first three eigenvectors of ${\bf S}$ and ${\bf R}$ are as follows:

S			R		
\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3
.00016	.005	0136	.424	561	150
.00051	.017	.0787	.446	528	.087
.99998	001	0002	.563	.387	051
.00529	.698	.0174	.454	.267	.166
.00322	716	.0195	.303	.425	296
.00020	.025	.9965	.073	.069	.923

10 10020471271357 app2, Dwnbondodd from http://online library.inly.com/doi/10 library.inly.com/doi/10

$$\mathbf{S}_{M} = \begin{pmatrix} 5.19 & 4.55 & 6.52 & 5.25 \\ 4.55 & 13.18 & 6.76 & 6.27 \\ 6.52 & 6.76 & 28.67 & 14.47 \\ 5.25 & 6.27 & 14.47 & 16.65 \end{pmatrix}$$

Covariance matrix for females:

$$\mathbf{S}_F = \begin{pmatrix} 9.14 & 7.55 & 4.86 & 4.15 \\ 7.55 & 18.60 & 10.22 & 5.45 \\ 4.86 & 10.22 & 30.04 & 13.49 \\ 4.15 & 5.45 & 13.49 & 28.00 \end{pmatrix}$$

The eigenvalues are as follows:

Males			Females		
λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative	λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative
43.56	.684	.684	48.96	.571	.571
11.14	.175	.858	18.46	.215	.786
6.47	.102	.960	13.54	.158	.944
2.52	.040	1.000	4.82	.056	1.000

The first two eigenvectors are as follows:

Males		Females		
\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_1	\mathbf{a}_2	
.24	.21	.22	.27	
.31	.85	.39	.62	
.76	48	.68	.17	
.52	.09	.58	72	

The variances in S_M have a slightly wider range (5.19–28.67) than those in S_F (9.14–30.04), and this is reflected in the eigenvalues. The first two components account for 86% of the variance from S_M , whereas the first two account for 79% from S_F .

12.11 Covariance matrix for species 1:

$$\mathbf{S}_1 = \left(\begin{array}{cccc} 187.6 & 176.9 & 48.4 & 113.6 \\ 176.9 & 345.4 & 76.0 & 118.8 \\ 48.4 & 76.0 & 66.4 & 16.2 \\ 113.6 & 118.8 & 16.2 & 239.9 \end{array}\right)$$

Covariance matrix for species 2:

$$\mathbf{S}_2 = \left(\begin{array}{cccc} 101.8 & 128.1 & 37.0 & 32.6 \\ 128.1 & 389.0 & 165.4 & 94.4 \\ 37.0 & 165.4 & 167.5 & 66.5 \\ 32.6 & 94.4 & 66.5 & 177.9 \end{array}\right)$$

The eigenvalues are as follows:

Species 1			Species 2		
λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative	λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative
561.3	.669	.669	555.7	.664	.664
169.0	.201	.870	145.4	.174	.838
65.3	.078	.948	93.5	.112	.950
43.7	.057	1.000	41.7	.050	1.000

The first two eigenvectors are as follows:

Species 1			Species 2		
\mathbf{a}_1	\mathbf{a}_2	$\overline{\mathbf{a}_1}$	\mathbf{a}_2		
.50	.01	.28	20		
.72	48	.81	34		
.17	22	.42	.14		
.45	.85	.30	.91		

The variances in S_1 have a wider range than those in S_2 , and the first two components of S_1 account for a higher percent of variance.

- 12.12 The variances on the diagonal of S in each case are:
 - (a) Pooled: 536.0, 59.9, 116.0, 896.4, 248.1, 862.0,
 - (**b**) Unpooled: 528.2, 68.9, 145.2, 1366.4, 264.4, 1069.1. The eigenvalues are as follows:

Pooled			Unpooled		
λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative	λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative
1050.6	.386	.386	1722.0	.500	.500
858.3	.316	.702	878.4	.255	.755
398.9	.147	.849	401.4	.117	.872
259.2	.095	.944	261.1	.076	.948
108.1	.040	.984	128.9	.037	.985
43.4	.016	1.000	50.4	.015	1.000

The first three eigenvectors are as follows:

Pooled		Unpooled			
\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3
.441	190	.864	.212	.389	.888
.041	038	.082	039	.064	.096
039	.031	.143	.080	066	.081
.450	.892	033	.776	608	.081
019	001	054	096	.010	.015
.774	407	471	.580	.686	434

- (c) The pattern in eigenvalues as well as eigenvectors is similar for the pooled and unpooled cases. The first three principal components account for 87.2% of the variance in the unpooled case compared to 84.9% for the pooled case.
- **12.13** The variances on the diagonal of **S** in each case are:
 - (a) Pooled: 49.1, 8.1, 12140.8, 136.2, 210.8, 2983.9,
 - **(b)** Unpooled: 63.2, 8.0, 15168.9, 186.6, 255.4, 4660.7.

The eigenvalues are as follows:

Pooled				Unpooled	
λ_i	$\lambda_i/\sum_j \lambda_j$	Cumulative	λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative
12,809.0	.8249	.8249	17,087.0	.8400	.8400
2,455.9	.1582	.9830	2,958.0	.1454	.9854
137.1	.0088	.9918	168.6	.0083	.9937
77.2	.0050	.9968	77.1	.0038	.9974
42.2	.0027	.9995	44.7	.0022	.9996
7.4	.0005	1.0000	7.3	.0004	1.0000

The eigenvectors are as follows:

Pooled		Unpo	ooled
\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_1	\mathbf{a}_2
004	000	.013	.027
005	.004	004	.004
.968	233	.931	355
002	.023	.028	.069
.103	.041	.103	.021
.228	.971	.350	.932

12.14 The variances on the diagonal of **S** are all less than 1, except $s_{x_4}^2 = 5.02$ and $s_{x_8}^2 = 1541.08$. We therefore expect the last variable, x_8 , to dominate the principal components of **S**. This is the case for **S** but not for **R**. The eigenvalues of **S** and **R** are as follows:

	S		R	
λ_i	$\lambda_i/\sum_j \lambda_j$	λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative
1541.55	.996273	3.174	.317	.317
4.83	.003123	2.565	.256	.574
.44	.000286	1.432	.143	.717
.27	.000174	1.277	.128	.845
.10	.000066	.542	.054	.899
.07	.000043	.473	.047	.946
.02	.000014	.251	.025	.971
.02	.000011	.118	.012	.983
.01	.000005	.104	.010	.994
.00	.000003	.064	.006	1.000

The eigenvectors of S and R are as follows:

	S]	R		
\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	
.0009	005	.12	.19	.69	.10	
.0007	034	.06	.32	.54	.26	
.0029	007	.46	06	.07	38	
.0014	.004	.29	.17	18	.49	
.0059	009	.52	.14	04	01	
0150	.982	09	42	.07	.55	
0028	092	31	.45	01	14	
0022	158	23	.54	14	10	
.0044	011	.09	.36	38	.44	
.9998	.014	.50	.11	13	09	

12.15 The variances in the diagonal of **S** are: 55.7, 10.9, 402.7, 25.7, 13.4, 438.3, 1.5, 106.2, 885.6, 22227.2, 214.1.

The eigenvalues of S and R are as follows:

	S	R						
λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative	λ_i	$\lambda_i / \sum_j \lambda_j$	Cumulative			
22,303.5	.91479	.91479	6.020	.54730	.54730			
1590.7	.06524	.98003	2.119	.19267	.73996			
358.0	.01469	.99471	1.130	.10275	.84272			
63.4	.00260	.99731	.760	.06909	.91181			
29.3	.00120	.99852	.355	.03231	.94411			
17.1	.00070	.99922	.259	.02358	.96769			
12.7	.00052	.99974	.122	.01110	.97879			
2.8	.00012	.99986	.110	.01004	.98883			
1.9	.00008	.99994	.060	.00544	.99427			
.9	.00004	.99997	.042	.00384	.99810			
.7	.00003	1.00000	.021	.00190	1.00000			

The eigenvectors of S and R are as follows:

	5	S]	R	
	\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_1	\mathbf{a}_2	a ₃	a ₄
<i>y</i> ₁	0097	.1331	.3304	0787	.0880	2807
y_2	.0006	.0608	.3542	.1928	.1071	2301
<i>y</i> ₃	0141	.4397	.3923	.0518	.1105	1413
y_4	0033	.1078	.3820	.0474	.1334	0104
<i>y</i> ₅	.0101	.0398	.2323	.5303	.0154	0710
<i>y</i> ₆	.0167	.4290	.3621	.2361	.1198	.1350
<i>y</i> ₇	0012	0072	0884	.0213	.7946	.5414
y_8	.0275	1844	2501	.5023	.0826	1506
<i>y</i> ₉	.0456	6657	3111	.3595	.2136	2278
y ₁₀	.9982	.0346	0243	.4685	4669	.5001
y ₁₁	.0034	.3311	.3357	1153	1853	.4550

For most purposes, one or two principal components would suffice for S, with 91% or 98% of the variance explained. For R, on the other hand, three components are required to explain 84% of the variance, and seven components are necessary to reach 98%. The reduction to one or two components for S is due in part to the relatively large variances of y_3 , y_6 , y_9 , and y_{10} . In the eigenvectors of S, we see that these four variables figure prominently in the first two principal components.

CHAPTER 13

13.1
$$\operatorname{var}(y_i) = \operatorname{var}(y_i - \mu_i) = \operatorname{var}(\lambda_{i1} f_1 + \lambda_{i2} f_2 + \dots + \lambda_{im} f_m + \varepsilon_i)$$

$$= \sum_{j=1}^m \lambda_{ij}^2 \operatorname{var}(f_j) + \operatorname{var}(\varepsilon_i) + \sum_{j \neq k} \lambda_{ij} \lambda_{ik} \operatorname{cov}(f_j, f_k)$$

$$+ \sum_{j=1}^m \lambda_{ij} \operatorname{cov}(f_j, \varepsilon_i)$$

$$= \sum_{j=1}^m \lambda_{ij}^2 + \psi_i.$$

The last equality follows by the assumptions $var(f_j) = 1$, $var(\varepsilon_i) = \psi_i$, $cov(f_j, f_k) = 0$, and $cov(f_j, \varepsilon_i) = 0$.

13.2
$$\operatorname{cov}(\mathbf{y}, \mathbf{f}) = \operatorname{cov}(\mathbf{\Lambda}\mathbf{f} + \boldsymbol{\varepsilon}, \mathbf{f})$$
 [by (13.3)]

$$= \operatorname{cov}(\mathbf{\Lambda}\mathbf{f}, \mathbf{f})$$
 [by (13.10)]

$$= E[\mathbf{\Lambda}\mathbf{f} - E(\mathbf{\Lambda}\mathbf{f})][\mathbf{f} - E(\mathbf{f})]'$$
 [by analogy to (3.31)]

$$= E[\mathbf{\Lambda}\mathbf{f} - \mathbf{\Lambda}E(\mathbf{f})][\mathbf{f} - E(\mathbf{f})]'$$

$$= \mathbf{\Lambda}E[\mathbf{f} - E(\mathbf{f})][\mathbf{f} - E(\mathbf{f})]'$$

$$= \mathbf{\Lambda}\operatorname{cov}(\mathbf{f}) = \mathbf{\Lambda}$$
 [by (13.7)]

13.3
$$E(\mathbf{f}^*) = E(\mathbf{T}'\mathbf{f}) = \mathbf{T}'E(\mathbf{f}) = \mathbf{T}'\mathbf{0} = \mathbf{0},$$

 $cov(\mathbf{f}^*) = cov(\mathbf{T}'\mathbf{f}) = \mathbf{T}'cov(\mathbf{f})\mathbf{T} = \mathbf{T}'\mathbf{I}\mathbf{T} = \mathbf{I}$

13.4 Let $\mathbf{E} = \mathbf{S} - (\hat{\mathbf{\Lambda}}\hat{\mathbf{\Lambda}}' + \hat{\mathbf{\Psi}})$. Then by (2.98), $\operatorname{tr}(\mathbf{E}'\mathbf{E}) = \sum_{ij} e_{ij}^2$. By (13.26), $\hat{\mathbf{\Psi}} = \operatorname{diag}(\mathbf{S} - \hat{\mathbf{\Lambda}}\hat{\mathbf{\Lambda}}')$, and \mathbf{E} has zeros on the diagonal. This gives the inequality

$$\sum_{ij} e_{ij}^2 \leq \text{ sum of squared elements of } \mathbf{S} - \hat{\mathbf{\Lambda}}\hat{\mathbf{\Lambda}}'.$$

By (2.98),

Sum of squared elements of $\mathbf{S} - \hat{\mathbf{\Lambda}} \hat{\mathbf{\Lambda}}' = \text{tr}(\mathbf{S} - \hat{\mathbf{\Lambda}} \hat{\mathbf{\Lambda}}')'(\mathbf{S} - \hat{\mathbf{\Lambda}} \hat{\mathbf{\Lambda}}')$.

Since $\mathbf{S} - \hat{\mathbf{\Lambda}}\hat{\mathbf{\Lambda}}'$ is symmetric, we have by (13.20), (13.23), and (13.24),

$$\mathbf{S} - \hat{\mathbf{\Lambda}} \hat{\mathbf{\Lambda}}' = \mathbf{C} \mathbf{D} \mathbf{C}' - \mathbf{C}_1 \mathbf{D}_1^{1/2} \mathbf{D}_1^{1/2} \mathbf{C}_1'$$
$$= \mathbf{C} \mathbf{D} \mathbf{C}' - \mathbf{C}_1 \mathbf{D}_1 \mathbf{C}_1',$$

where $\mathbf{C} = (\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_p)$ contains normalized eigenvectors of $\mathbf{S}, \mathbf{D} = \operatorname{diag}(\theta_1, \theta_2, \dots, \theta_p)$ contains eigenvalues of $\mathbf{S}, \mathbf{C}_1 = (\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_m)$, and $\mathbf{D}_1 = \operatorname{diag}(\theta_1, \theta_2, \dots, \theta_m)$.

Using the partitioned forms $\mathbf{C} = (\mathbf{C}_1, \mathbf{C}_2)$ and $\mathbf{D} = \begin{pmatrix} \mathbf{D}_1 & \mathbf{O} \\ \mathbf{O} & \mathbf{D}_2 \end{pmatrix}$, show that $\mathbf{C}_1'\mathbf{C}_1 = \mathbf{I}_m$, $\mathbf{C}_1'\mathbf{C}_2 = \mathbf{O}$, $\mathbf{C}'\mathbf{C}_1 = \begin{pmatrix} \mathbf{I}_m \\ \mathbf{O} \end{pmatrix}$, $\mathbf{D} \begin{pmatrix} \mathbf{I}_m \\ \mathbf{O} \end{pmatrix} = \begin{pmatrix} \mathbf{D}_1 \\ \mathbf{O} \end{pmatrix}$, $\mathbf{C} \begin{pmatrix} \mathbf{D}_1 \\ \mathbf{O} \end{pmatrix} = \mathbf{C}_1\mathbf{D}_1$, and $\mathbf{C}\mathbf{D}\mathbf{C}'\mathbf{C}_1\mathbf{D}_1\mathbf{C}_1' = \mathbf{C}_1\mathbf{D}_1^2\mathbf{C}_1'$. Show similarly that $\mathbf{C}_1\mathbf{D}_1\mathbf{C}_1'\mathbf{C}\mathbf{D}\mathbf{C}' = \mathbf{C}_1\mathbf{D}_1^2\mathbf{C}_1'$ and $\mathbf{C}_1\mathbf{D}_1\mathbf{C}_1'\mathbf{C}_1\mathbf{D}_1\mathbf{C}_1' = \mathbf{C}_1\mathbf{D}_1^2\mathbf{C}_1'$. Now by (2.97) $\mathbf{tr}(\mathbf{C}\mathbf{D}^2\mathbf{C}') = \mathbf{tr}(\mathbf{C}'\mathbf{C}\mathbf{D}^2) = \mathbf{tr}(\mathbf{D}^2) = \sum_{i=1}^p \theta_i^2$. Similarly, $\mathbf{tr}(\mathbf{C}_1\mathbf{D}_1^2\mathbf{C}_1') = \sum_{i=1}^m \theta_i^2$. Then

$$\begin{split} \operatorname{tr}(\mathbf{S} - \hat{\mathbf{\Lambda}} \hat{\mathbf{\Lambda}}')'(\mathbf{S} - \hat{\mathbf{\Lambda}} \hat{\mathbf{\Lambda}}') &= \operatorname{tr}(\mathbf{C} \mathbf{D} \mathbf{C}' - \mathbf{C}_1 \mathbf{D}_1 \mathbf{C}_1')(\mathbf{C} \mathbf{D} \mathbf{C}' - \mathbf{C}_1 \mathbf{D}_1 \mathbf{C}_1') \\ &= \operatorname{tr}(\mathbf{C} \mathbf{D} \mathbf{C}' \mathbf{C} \mathbf{D} \mathbf{C}' - \mathbf{C} \mathbf{D} \mathbf{C}' \mathbf{C}_1 \mathbf{D}_1 \mathbf{C}_1' - \mathbf{C}_1 \mathbf{D}_1 \mathbf{C}_1' \mathbf{C} \mathbf{D} \mathbf{C}' \\ &+ \mathbf{C}_1 \mathbf{D}_1 \mathbf{C}_1' \mathbf{C}_1 \mathbf{D}_1 \mathbf{C}_1') \\ &= \sum_{i=1}^p \theta_i^2 - \sum_{i=1}^m \theta_i^2 - \sum_{i=1}^m \theta_i^2 + \sum_{i=1}^m \theta_i^2 \\ &= \sum_{i=m+1}^p \theta_i^2. \end{split}$$

10.10020471271357.app2, Dwnloaded from thtc//caline library wiey, com/doi/10.1020471271357.app2 by Inag Himarl NPL, Wiley Online Library on [2001/2023]. See the Terra and Conditions (thps://onlinelibrary-wiley, comberns-and-conditions) on Wiley Online Library for rules of use; OA articles as governed by the applicable Creater Common Licenses

13.5
$$\sum_{i=1}^{p} \sum_{j=1}^{m} \hat{\lambda}_{ij}^2 = \sum_{i=1}^{p} \left[\sum_{j=1}^{m} \hat{\lambda}_{ij}^2 \right] = \sum_{i=1}^{p} \hat{h}_i^2$$
 [by (13.28)] By interchanging the order of summation, we have

$$\sum_{i=1}^{p} \sum_{i=1}^{m} \hat{\lambda}_{ij}^2 = \sum_{i=1}^{m} \sum_{i=1}^{p} \hat{\lambda}_{ij}^2 = \sum_{i=1}^{m} \theta_j \quad \text{[by (13.29)]}.$$

13.6 We use the covariance matrix to avoid working with standardized variables. The eigenvalues of **S** are 39.16, 8.78, .66, .30, and 0. The eigenvector corresponding to $\lambda_5 = 0$ is

$$\mathbf{a}_5' = (-.75, -.25, .25, .50, .25).$$

As noted in Section 12.7, $s_{z_5}^2 = 0$ implies $z_5 = 0$. Thus

$$z_5 = \mathbf{a}_5' \mathbf{y} = -.75y_1 - .25y_2 + .25y_3 + .50y_4 + .25y_5 = 0,$$

 $3y_1 + y_2 = y_3 + 2y_4 + y_5.$

13.7 Words data of Table 5.9:

	Comp	Principal Component Loadings		max ated lings	Communalities,	
	f_1	f_2	f_1	f_2	\hat{h}_i^2	
Variables						
Informal words	.802	535	.956	.129	.930	
Informal verbs	.856	326	.858	.321	.839	
Formal words	.883	.270	.484	.786	.853	
Formal verbs	.714	.658	.101	.966	.943	
Variance	2.666	.899	1.894	1.671	3.565	
Proportion	.666	.225	.474	.418	.891	

The orthogonal matrix T for the varimax rotation as given by (13.49) is

$$\mathbf{T} = \left(\begin{array}{cc} .750 & .661 \\ -.661 & .750 \end{array} \right).$$

Thus $\sin \phi = -.661$ and $\phi = -41.4^{\circ}$. A graphical rotation of -40° would produce results very close to the varimax rotation.

13.8 Ramus bone data of Table 3.6:

	Comp	cipal ponent dings	Varimax Rotated Loadings Communalities,		Rotated		Pat	blique tern dings
	f_1	f_2	f_1	f_2	\hat{h}_i^2	f_1	f_2	
Variables								
8 years	.949	295	.884	.455	.988	108	1.087	
$8\frac{1}{2}$ years	.974	193	.830	.545	.986	.106	.900	
9 years	.978	.171	.578	.808	.986	.825	.188	
$9\frac{1}{2}$ years	.943	.319	.449	.888	.991	1.099	121	
Variance	3.695	.255	2.005	1.946	3.951			
Proportion	.924	.064	.501	.486	.988			

The Harris–Kaiser orthoblique rotation produced loadings for which the variables have a complexity of 1. These oblique loadings provide a much cleaner simple structure than that given by the varimax loadings. For interpretation, we see that one factor represents variables 1 and 2, and the other factor represents variables 3 and 4. This same clustering of variables can be deduced from the varimax loadings if we simply use the larger of the two loadings for each variable.

The correlation between the two oblique factors is .87. The angle between the oblique axes is $\cos^{-1}(.87) = 29.5^{\circ}$. With such a small angle between the axes and a large correlation between the factors, it is clear that a single factor would better represent the variables. This is also borne out by the eigenvalues of the correlation matrix: 3.695, .255, .033, and .017. The first accounts for 92% of the variance and the second for only 6%.

13.9 Rootstock data of Table 6.2:

	Principal Component Loadings		Rot	max ated dings	Communalities,	
	f_1	f_2	f_1	f_2	\hat{h}_i^2	
Variables						
Trunk 4 years	.787	.575	.167	.960	.949	
Extension 4 years	.849	.467	.287	.925	.939	
Trunk 15 years	.875	455	.946	.280	.973	
Weight 15 years	.824	547	.973	.179	.978	
Variance	2.785	1.054	1.951	1.888	3.839	
Proportion	.696	.264	.488	.472	.960	

10 10020471271357 app2, Dwnbondodd from http://online library.inly.com/doi/10 library.inly.com/doi/10

The rotation was successful in producing variables with a complexity of 1, that is, partitioning the variables into two groups, each with two variables.

13.10 (a) Fish data of Table 6.17:

	Comp	cipal ponent dings	Varimax Rotated Loadings		Communalities,	
	f_1	f_2	f_1	f_2	\hat{h}_i^2	
Variables						
y_1	.830	403	.874	.294	.851	
y_2	.783	504	.911	.189	.866	
<i>y</i> ₃	.803	.432	.270	.871	.831	
<i>y</i> ₄	.769	.497	.200	.893	.838	
Variance	2.537	.850	1.709	1.678	3.386	
Proportion	.634	.213	.427	.420	.847	

(b) The loadings for y_1 and y_2 are similar. In **R** we see some indication of the reason for this; y_1 and y_2 are more highly correlated than any other pair of variables, and their correlations with y_3 and y_4 are similar:

$$\mathbf{R} = \left(\begin{array}{cccc} 1.00 & .71 & .51 & .40 \\ .71 & 1.00 & .38 & .40 \\ .51 & .38 & 1.00 & .67 \\ .40 & .40 & .67 & 1.00 \end{array}\right).$$

(c) By (13.58), the factor score coefficient matrix is

$$\hat{\mathbf{B}}_1 = \mathbf{R}^{-1} \hat{\mathbf{\Lambda}} = \begin{pmatrix} .566 & -.109 \\ .636 & -.207 \\ -.130 & .584 \\ -.194 & .630 \end{pmatrix},$$

where $\hat{\Lambda}$ is the matrix of rotated factor loadings given in part (a). The factor scores are given by (13.59) as follows:

Me	thod 1	Meth	nod 2	Method 3		
\hat{f}_1	\hat{f}_2	\hat{f}_1	\hat{f}_2	\hat{f}_1	\hat{f}_2	
.544	1.151	254	.309	-1.156	2.104	
1.250	254	309	-1.534	321	.878	
1.017	1.120	-1.865	-1.558	671	.947	
147	-1.583	999	690	.067	1.130	
.219	103	.520	343	-1.610	458	
1.007	.679	.919	111	.557	.491	
1.413	186	443	018	454	1.157	
666	-2.279	265	.676	961	.063	
1.057	-1.870	1.449	295	230	1.721	
.388	440	1.371	.295	-1.309	.054	
1.328	298	1.260	027	-1.766	111	
.694	033	000	-1.452	-1.636	048	

(d) A one-way MANOVA on the two factor scores comparing the three methods yielded the following values for **E** and **H**:

$$\mathbf{E} = \begin{pmatrix} 21.8606 & 10.3073 \\ 10.3073 & 25.2081 \end{pmatrix}, \qquad \mathbf{H} = \begin{pmatrix} 13.1394 & -10.3073 \\ -10.3073 & 9.7919 \end{pmatrix}.$$

The four MANOVA test statistics are $\Lambda = .3631$, $V^{(s)} = .6552$, $U^{(s)} = 1.7035$, and $\theta = .6259$. All are highly significant.

13.11 (a) For the flea data of Table 5.5, the eigenvalues of **R** are 2.273, 1.081, .450, and .196. There is a noticeable gap between 1.081 and .450, and the first two factors account for 83.9% of the variance. Thus m=2 factors seem to be indicated for this set of data.

(b)

	Comp	cipal oonent lings	Varimax Rotated Loadings		Communalities,	Orthoblique Pattern Loadings	
	f_1	f_2	f_1	f_2	\hat{h}_i^2	f_1	f_2
Variables							
y_1	038	.989	025	.990	.980	003	.990
y_2	.889	.269	.892	.256	.862	.898	.253
y_3	.893	157	.891	170	.823	.887	173
<i>y</i> ₄	.827	073	.823	084	.689	.824	087
Variance	2.273	1.081	2.273	1.081	3.354		
Proportion	.568	.270	.568	.270	.839		

(The variance explained by the varimax rotated factors remains the same as for the initial factors when rounded to three decimal places.)

10.1002471721357.app2, Downloaded from http://online library.wiely.com/doi/10.1012/0471271357.app2 by Inag Himari NPL, Wiley Online Library on 12001/2023]. See the Terrans and Conditions (https://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2. Downloaded from http://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2. Downloaded from http://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2. Downloaded from http://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2 by Inag Himari NPL, Wiley Online Library on 12001/2023]. See the Terrans and Conditions (https://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2. Downloaded from http://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2 by Inag Himari NPL, Wiley Online Library on 12001/2023]. See the Terrans and Conditions (https://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2. Downloaded from http://onlinelibrary.wiely.com/doi/10.1012/0471271357.app2. Downloaded from http://onlinelibrary.wiely.com/doi/10.1

(c) In this case, neither of the rotations changes the initial loadings appreciably. The reason for this unusual outcome can be seen in the correlation matrix:

$$\mathbf{R} = \begin{pmatrix} 1.00 & .18 & -.17 & -.07 \\ .18 & 1.00 & .73 & .59 \\ -.17 & .73 & 1.00 & .59 \\ -.07 & .59 & .59 & 1.00 \end{pmatrix}.$$

There are clearly two clusters of variables: $\{y_1\}$ and $\{y_2, y_3, y_4\}$. We would expect two factors corresponding to these groupings to emerge after rotation. That the same pattern surfaces in the initial factor loadings (based on eigenvectors) is due to their affiliation with principal components. As noted in Section 12.8.1, if a variable has small correlations with all other variables, the variable itself will essentially constitute a principal component. In this case, y_1 has this property and makes up most of the second principal component. The first component is comprised of the other three variables.

13.12 (a) For the engineer data of Table 5.6, the number of eigenvalues greater than 1 is three, but the three account for only 70% of the variance. It requires four eigenvalues to reach 84%. The scree plot also indicates four eigenvalues.

(b)

	Con	Principal		Rot	Varimax ated Load	Communalities,	
	f_1	f_2	f_3	f_1	f_2	f_3	\hat{h}_i^2
Variables							
y_1	.536	.461	.478	063	.834	.170	.729
<i>y</i> ₂	129	.870	182	357	.100	.818	.806
y_3	.514	254	448	.724	026	.068	.529
y_4	.724	366	110	.739	.295	193	.670
<i>y</i> ₅	416	414	.649	484	013	729	.766
<i>y</i> ₆	.715	.124	.420	.239	.800	069	.702
Variance	1.775	1.354	1.073	1.493	1.435	1.275	4.202
Proportion	.296	.226	.179	.249	.239	.212	.700

(c) The initial communality estimates for the six variables are given by (13.36) as .215, .225, .113, .255, .161, .248. With these substituted for the diagonal of \mathbf{R} , the eigenvalues of $\mathbf{R} - \hat{\mathbf{\Psi}}$ are

	Principal Component Loadings			Rot	Varimax ated Load	Communalities,	
	f_1	f_2	f_3	f_1	f_2	f_3	\hat{h}_i^2
Variables							
y_1	.403	.312	.227	.030	.536	.151	.311
y_2	106	.569	100	288	.083	.505	.345
<i>y</i> ₃	.343	139	197	.413	.060	.037	.176
y_4	.559	247	090	.564	.233	094	.381
<i>y</i> ₅	286	246	.328	262	088	417	.250
<i>y</i> ₆	.556	.089	.197	.258	.537	.003	.356

(d) The pattern of loadings is similar in parts (b) and (c), and the interpretation of the three factors would be the same.

13.13 Probe word data of Table 3.5:

	Com	Principal Component Loadings		max ated lings	Communalities,	Orthoblique Pattern Loadings	
	f_1	f_2	f_1	f_2	\hat{h}_i^2	f_1	f_2
Variables							
y_1	.817	157	.732	.395	.692	.737	.131
y_2	.838	336	.861	.271	.815	.963	092
<i>y</i> ₃	.874	.288	.494	.776	.847	.248	.734
<i>y</i> 4	.838	308	.844	.292	.798	.931	057
<i>y</i> ₅	.762	.547	.244	.905	.879	134	1.023
Variance	3.416	.614	2.294	1.736	4.031		
Proportion	.683	.123	.459	.347	.806		

The loadings for y_2 are similar to those for y_4 in all three sets of loadings. The reason for this can be seen in the correlation matrix

$$\mathbf{R} = \begin{pmatrix} 1.00 & .61 & .76 & .58 & .41 \\ .61 & 1.00 & .55 & .75 & .55 \\ .76 & .55 & 1.00 & .61 & .69 \\ .58 & .75 & .61 & 1.00 & .52 \\ .41 & .55 & .69 & .52 & 1.00 \end{pmatrix}.$$

The correlations of y_2 with y_1 , y_3 , and y_5 are very similar to the correlations of y_4 with y_1 , y_3 , and y_5 .

10 10020471271357 app2, Dwnbondodd from http://online library.inly.com/doi/10 library.inly.com/doi/10

CHAPTER 14

14.1 Adding and subtracting \overline{x} and \overline{y} in (14.2) (squared), we obtain

$$d^{2}(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{p} [(x_{j} - \overline{x}) - (y_{j} - \overline{y}) + (\overline{x} - \overline{y})]^{2}$$

$$= \sum_{j=1}^{p} (x_{j} - \overline{x})^{2} + \sum_{j=1}^{p} (y_{i} - \overline{y})^{2} + p(\overline{x} - \overline{y})^{2}$$

$$-2 \sum_{j=1}^{p} (x_{j} - \overline{x})(y_{j} - \overline{y}).$$

The other two terms vanish because $\sum_{j}(x_{j}-\overline{x})=\sum_{j}(y_{j}-\overline{y})=0$. Substituting $v_{x}^{2}=\sum_{j=1}^{p}(x_{j}-\overline{x})^{2}$ and $v_{y}^{2}=\sum_{j=1}^{p}(y_{j}-\overline{y})^{2}$ and adding and subtracting $-2\sqrt{v_{x}^{2}v_{y}^{2}}=-2v_{x}v_{y}$, we obtain

$$d^{2}(\mathbf{x}, \mathbf{y}) = v_{x}^{2} + v_{y}^{2} - 2\sqrt{v_{x}^{2}v_{y}^{2}} + p(\overline{x} - \overline{y})^{2} + 2v_{x}v_{y}$$

$$-2\sqrt{v_{x}^{2}v_{y}^{2}} \frac{\sum_{j=1}^{p} (x_{j} - \overline{x})(y_{j} - \overline{y})}{\sqrt{v_{x}^{2}v_{y}^{2}}}$$

$$= (v_{x} - v_{y})^{2} + p(\overline{x} - \overline{y})^{2} + 2v_{x}v_{y}(1 - r_{xy}).$$

14.2 (a) Since $\overline{y}_{AB} = \sum_{i=1}^{n_{AB}} y_i / n_{AB}$, we have by (14.16),

$$SSE_{AB} = \sum_{i=1}^{n_{AB}} (\mathbf{y}_{i} - \overline{\mathbf{y}}_{AB})' (\mathbf{y}_{i} - \overline{\mathbf{y}}_{AB})$$

$$= \sum_{i=1}^{n_{AB}} \mathbf{y}_{i}' \mathbf{y}_{i} - \sum_{i=1}^{n_{AB}} \mathbf{y}_{i}' \overline{\mathbf{y}}_{AB} - \sum_{i=1}^{n_{AB}} \overline{\mathbf{y}}_{AB}' \mathbf{y}_{i}$$

$$+ \sum_{i=1}^{n_{AB}} \overline{\mathbf{y}}_{AB}' \overline{\mathbf{y}}_{AB}$$

$$= \sum_{i=1}^{n_{AB}} \mathbf{y}_{i}' \mathbf{y}_{i} - n_{AB} \overline{\mathbf{y}}_{AB}' \overline{\mathbf{y}}_{AB} - n_{AB} \overline{\mathbf{y}}_{AB}' \overline{\mathbf{y}}_{AB}$$

$$+ n_{AB} \overline{\mathbf{y}}_{AB}' \overline{\mathbf{y}}_{AB}$$

$$= \sum_{i=1}^{n_{AB}} \mathbf{y}_{i}' \mathbf{y}_{i} - n_{AB} \overline{\mathbf{y}}_{AB}' \overline{\mathbf{y}}_{AB}.$$

Similarly, $SSE_A = \sum_{i=1}^{n_A} \mathbf{y}_i' \mathbf{y}_i - n_A \overline{\mathbf{y}}_A' \overline{\mathbf{y}}_A$ and $SSE_B = \sum_{i=1}^{n_B} \mathbf{y}_i' \mathbf{y}_i - n_B \overline{\mathbf{y}}_B' \overline{\mathbf{y}}_B$. Now

$$\begin{split} n_{AB}\overline{\mathbf{y}}_{AB}'\overline{\mathbf{y}}_{AB} &= (n_A + n_B)\frac{(n_A\overline{\mathbf{y}}_A + n_B\overline{\mathbf{y}}_B)'}{n_A + n_B}\frac{(n_A\overline{\mathbf{y}}_A + n_B\overline{\mathbf{y}}_B)}{n_A + n_B} \\ &= \frac{n_A^2\overline{\mathbf{y}}_A'\overline{\mathbf{y}}_A + n_An_B\overline{\mathbf{y}}_A'\overline{\mathbf{y}}_B + n_An_B\overline{\mathbf{y}}_A'\overline{\mathbf{y}}_B + n_B^2\overline{\mathbf{y}}_B'\overline{\mathbf{y}}_B}{n_A + n_B}. \end{split}$$

Thus

$$SSE_{AB} - (SSE_A + SSE_B) = \sum_{i=1}^{n_{AB}} \mathbf{y}_i' \mathbf{y}_i - \sum_{i=1}^{n_A} \mathbf{y}_i' \mathbf{y}_i - \sum_{i=1}^{n_B} \mathbf{y}_i' \mathbf{y}_i$$
$$+ n_A \overline{\mathbf{y}}_A' \overline{\mathbf{y}}_A + n_B \overline{\mathbf{y}}_B' \overline{\mathbf{y}}_B - n_{AB} \overline{\mathbf{y}}_{AB}' \overline{\mathbf{y}}_{AB}$$
$$= n_A \overline{\mathbf{y}}_A' \overline{\mathbf{y}}_A + n_B \overline{\mathbf{y}}_B' \overline{\mathbf{y}}_B - n_{AB} \overline{\mathbf{y}}_{AB}' \overline{\mathbf{y}}_{AB}.$$

Show that when the right side of (14.16) is expanded, it reduces to this same expression [see Problem 14.3(b)].

(b) Multiplying out the right side of (14.16), we have

$$\begin{split} n_{A}\overline{\mathbf{y}}_{A}'\overline{\mathbf{y}}_{A} - n_{A}\overline{\mathbf{y}}_{A}'\overline{\mathbf{y}}_{AB} - n_{A}\overline{\mathbf{y}}_{AB}'\overline{\mathbf{y}}_{A} + n_{A}\overline{\mathbf{y}}_{AB}'\overline{\mathbf{y}}_{AB} + n_{B}\overline{\mathbf{y}}_{B}'\overline{\mathbf{y}}_{B} \\ - n_{B}\overline{\mathbf{y}}_{B}'\overline{\mathbf{y}}_{AB} - n_{B}\overline{\mathbf{y}}_{AB}'\overline{\mathbf{y}}_{B} + n_{B}\overline{\mathbf{y}}_{AB}'\overline{\mathbf{y}}_{AB} \\ = n_{A}\overline{\mathbf{y}}_{A}'\overline{\mathbf{y}}_{A} + n_{B}\overline{\mathbf{y}}_{B}'\overline{\mathbf{y}}_{B} - 2(n_{A}\overline{\mathbf{y}}_{A}' + n_{B}\overline{\mathbf{y}}_{B}')\overline{\mathbf{y}}_{AB} + (n_{A} + n_{B})\overline{\mathbf{y}}_{AB}'\overline{\mathbf{y}}_{AB} \\ = n_{A}\overline{\mathbf{y}}_{A}'\overline{\mathbf{y}}_{A} + n_{B}\overline{\mathbf{y}}_{B}'\overline{\mathbf{y}}_{B} - 2(n_{A} + n_{B})\overline{\mathbf{y}}_{AB}'\overline{\mathbf{y}}_{AB} + (n_{A} + n_{B})\overline{\mathbf{y}}_{AB}'\overline{\mathbf{y}}_{AB} \\ = n_{A}\overline{\mathbf{y}}_{A}'\overline{\mathbf{y}}_{A} + n_{B}\overline{\mathbf{y}}_{B}'\overline{\mathbf{y}}_{B} - (n_{A} + n_{B})\overline{\mathbf{y}}_{AB}'\overline{\mathbf{y}}_{AB}. \end{split}$$

Substitute $\overline{\mathbf{y}}_{AB} = (n_A \overline{\mathbf{y}}_A + n_B \overline{\mathbf{y}}_B)/(n_A + n_B)$.

14.3 (a) Complete linkage. From Table 14.2, we have

$$D(C, AB) = \frac{1}{2}D(C, A) + \frac{1}{2}D(C, B) + \frac{1}{2}|D(C, A) - D(C, B)|$$
 (1)

If D(C, A) > D(C, B), then |D(C, A) - D(C, B)| = D(C, A) - D(C, B), and equation (1) becomes D(C, AB) = D(C, A). If D(C, A) > D(C, B), then |D(C, A) - D(C, B)| = D(C, B) - D(C, A) and equation (1) becomes D(C, AB) = D(C, B). Thus equation (1) can be written as $D(C, AB) = \max[D(C, A), D(C, B)]$, which is equivalent to (14.9), the definition of distance for the complete linkage method.

(b) Average linkage. From Table 14.2, we have

$$D(C, AB) = \frac{n_A}{n_A + n_B} D(C, A) + \frac{n_B}{n_A + n_B} D(C, B).$$
 (2)

By (14.10) equation (2) can be written as

$$D(C, AB) = \frac{n_A}{n_A + n_B} \cdot \frac{1}{n_C n_A} \sum_{i=1}^{n_C} \sum_{j=1}^{n_A} d(\mathbf{y}_i, \mathbf{y}_j)$$

$$+ \frac{n_B}{n_A + n_B} \cdot \frac{1}{n_C n_B} \sum_{i=1}^{n_C} \sum_{j=1}^{n_B} d(\mathbf{y}_i, \mathbf{y}_j)$$

$$= \frac{1}{n_C (n_A + n_B)} \sum_{i=1}^{n_C} \left[\sum_{j=1}^{n_A} d(\mathbf{y}_i, \mathbf{y}_j) + \sum_{j=1}^{n_B} d(\mathbf{y}_i, \mathbf{y}_j) \right]$$

$$= \frac{1}{n_C n_{AB}} \sum_{i=1}^{n_C} \sum_{j=1}^{n_{AB}} d(\mathbf{y}_i, \mathbf{y}_j),$$

which, by (14.10), is the definition of distance for the average linkage method.

(c) Substitute $\overline{\mathbf{y}}_{AB} = (n_A \overline{\mathbf{y}}_A + n_B \overline{\mathbf{y}}_B)/(n_A + n_B)$ in the left side of (14.40) in the statement of Problem 14.3(c) and multiply to obtain

$$\begin{split} \overline{\mathbf{y}}_C' \overline{\mathbf{y}}_C &- \frac{2n_A \overline{\mathbf{y}}_A' \overline{\mathbf{y}}_C}{n_A + n_B} + \frac{2n_A n_B \overline{\mathbf{y}}_A' \overline{\mathbf{y}}_B}{(n_A + n_B)^2} - \frac{2n_B \overline{\mathbf{y}}_B' \overline{\mathbf{y}}_C}{n_A + n_B} \\ &+ \frac{n_A^2 \overline{\mathbf{y}}_A' \overline{\mathbf{y}}_A}{(n_A + n_B)^2} + \frac{n_B^2 \overline{\mathbf{y}}_B' \overline{\mathbf{y}}_B}{(n_A + n_B)^2}. \end{split}$$

Similarly, multiply on the right side of (14.40) to obtain the same result.

(d) Using $n_A = n_B$ in $\overline{\mathbf{y}}_{AB} = (n_A \overline{\mathbf{y}}_A + n_B \overline{\mathbf{y}}_B)/(n_A + n_B)$ in (14.12), we obtain $\mathbf{m}_{AB} = \frac{1}{2}(\overline{\mathbf{y}}_A + \overline{\mathbf{y}}_B)$ in (14.13). Then (14.40) [see part (c)] becomes

$$(\overline{\mathbf{y}}_C - \mathbf{m}_{AB})'(\overline{\mathbf{y}}_C - \mathbf{m}_{AB}) = \frac{1}{2}(\overline{\mathbf{y}}_C - \overline{\mathbf{y}}_A)'(\overline{\mathbf{y}}_C - \overline{\mathbf{y}}_A) + \frac{1}{2}(\overline{\mathbf{y}}_C - \overline{\mathbf{y}}_B)'(\overline{\mathbf{y}}_C - \overline{\mathbf{y}}_B) - \frac{1}{4}(\overline{\mathbf{y}}_A - \overline{\mathbf{y}}_B)'(\overline{\mathbf{y}}_A - \overline{\mathbf{y}}_B),$$

which matches the parameter values for the median method in Table 14.2.

(e) By (14.19),

$$(\overline{\mathbf{y}}_A - \overline{\mathbf{y}}_B)'(\overline{\mathbf{y}}_A - \overline{\mathbf{y}}_B) = \frac{n_A + n_B}{n_A n_B} I_{AB},$$

and we have analogous expressions for $(\overline{\mathbf{y}}_C - \overline{\mathbf{y}}_{AB})'(\overline{\mathbf{y}}_C - \overline{\mathbf{y}}_{AB})$, $(\overline{\mathbf{y}}_C - \overline{\mathbf{y}}_{AB})'(\overline{\mathbf{y}}_C - \overline{\mathbf{y}}_{AB})$, and $(\overline{\mathbf{y}}_C - \overline{\mathbf{y}}_B)'(\overline{\mathbf{y}}_C - \overline{\mathbf{y}}_B)$. Then (14.40) in part (c) becomes

$$\frac{n_C + n_{AB}}{n_C n_{AB}} I_{C(AB)} = \left(\frac{n_A}{n_A + n_B}\right) \left(\frac{n_C + n_A}{n_C n_A}\right) I_{CA}
+ \left(\frac{n_B}{n_A + n_B}\right) \left(\frac{n_C + n_B}{n_C n_B}\right) I_{CB}
- \left[\frac{n_A n_B}{(n_A + n_B)^2}\right] \left(\frac{n_A + n_B}{n_A n_B}\right) I_{AB}
= \frac{n_A + n_C}{n_C n_{AB}} I_{AC} + \frac{n_B + n_C}{n_C n_{AB}} I_{BC} - \frac{1}{n_{AB}} I_{AB}.$$

Solve for $I_{C(AB)}$.

14.4 If $\gamma = 0$, then (14.20) becomes

$$D(C, AB) = \alpha_A D(C, A) + \alpha_B D(C, B) + \beta D(A, B). \tag{1}$$

By (14.25), we have D(A, C) > D(A, B) and D(B, C) > D(A, B). Thus, replacing D(C, A) and D(C, B) in equation (1) by D(A, B), we obtain

$$D(C, AB) > \alpha_A D(A, B) + \alpha_B D(A, B) + \beta D(A, B),$$

which is equivalent to (14.26).

14.5 (a)
$$\overline{\mathbf{v}}_{..} = \frac{1}{gn} \sum_{i=1}^{g} \sum_{j=1}^{n} \mathbf{v}_{ij} = \frac{1}{gn} \sum_{i=1}^{g} \sum_{j=1}^{n} (\mathbf{A}\mathbf{y}_{ij} + \mathbf{b}) = \frac{1}{gn} \left(\mathbf{A} \sum_{ij} \mathbf{y}_{ij} + gn\mathbf{b} \right)$$

$$= \mathbf{A} \left(\frac{1}{gn} \sum_{ij} \mathbf{y}_{ij} \right) + \mathbf{b} = \mathbf{A} \overline{\mathbf{y}}_{..} + \mathbf{b}$$

Show similarly that $\overline{\mathbf{v}}_{i.} = \mathbf{A}\overline{\mathbf{y}}_{i.} + \mathbf{b}$. Then by (6.9), we have

$$\mathbf{H}_{v} = n \sum_{i=1}^{g} (\overline{\mathbf{v}}_{i.} - \overline{\mathbf{v}}_{..})(\overline{\mathbf{v}}_{i.} - \overline{\mathbf{v}}_{..})'$$

$$= n \sum_{i} [\mathbf{A}\overline{\mathbf{y}}_{i.} + \mathbf{b} - (\mathbf{A}\overline{\mathbf{y}}_{..} + \mathbf{b})][\mathbf{A}\overline{\mathbf{y}}_{i.} + \mathbf{b} - (\mathbf{A}\overline{\mathbf{y}}_{..} + \mathbf{b})]'$$

$$= n \sum_{i} (\mathbf{A}\overline{\mathbf{y}}_{i.} - \mathbf{A}\overline{\mathbf{y}}_{..})(\mathbf{A}\overline{\mathbf{y}}_{i.} - \mathbf{A}\overline{\mathbf{y}}_{..})'$$

$$= n \sum_{i} \mathbf{A}(\overline{\mathbf{y}}_{i.} - \overline{\mathbf{y}}_{..})(\overline{\mathbf{y}}_{i.} - \overline{\mathbf{y}}_{..})'\mathbf{A}' \quad \text{[by (2.27)]}$$

$$= n \mathbf{A} \left[\sum_{i} (\overline{\mathbf{y}}_{i.} - \overline{\mathbf{y}}_{..})(\overline{\mathbf{y}}_{i.} - \overline{\mathbf{y}}_{..})' \right] \mathbf{A}' \quad \text{[by (2.45)]}$$

$$= \mathbf{A}\mathbf{H}_{y}\mathbf{A}'.$$

Show similarly that $\mathbf{E}_v = \mathbf{A}\mathbf{E}_y\mathbf{A}'$.

10.10020471271357.app2, Dwnloaded from thtc//caline library wiey, com/doi/10.1020471271357.app2 by Inag Himarl NPL, Wiley Online Library on [2001/2023]. See the Terra and Conditions (thps://onlinelibrary-wiley, comberns-and-conditions) on Wiley Online Library for rules of use; OA articles as governed by the applicable Creater Common Licenses

(b)
$$tr(\mathbf{E}_{v}) = tr(\mathbf{A}\mathbf{E}_{v}\mathbf{A}') = tr(\mathbf{A}'\mathbf{A}\mathbf{E}_{v}) \neq tr(\mathbf{E}_{v})$$

(c) $|\mathbf{E}_v| = |\mathbf{A}\mathbf{E}_y\mathbf{A}'| = |\mathbf{A}||\mathbf{E}_y||\mathbf{A}'| = |\mathbf{A}|^2|\mathbf{E}_y| = c|\mathbf{E}_y|$, where c > 0. Thus minimizing $|\mathbf{E}_v|$ is equivalent to minimizing $|\mathbf{E}_v|$.

(d)
$$tr(\mathbf{E}_{v}^{-1}\mathbf{H}_{v}) = tr[(\mathbf{A}\mathbf{E}_{y}\mathbf{A}')^{-1}(\mathbf{A}\mathbf{H}_{y}\mathbf{A}')]$$
$$= tr[(\mathbf{A}')^{-1}\mathbf{E}_{y}^{-1}\mathbf{A}^{-1}\mathbf{A}\mathbf{H}_{y}\mathbf{A}']$$
$$= tr[(\mathbf{A}')^{-1}\mathbf{E}_{y}^{-1}\mathbf{H}_{y}\mathbf{A}']$$
$$= tr[\mathbf{A}'(\mathbf{A}')^{-1}\mathbf{E}_{y}^{-1}\mathbf{H}_{y}]$$
$$= tr(\mathbf{E}_{v}^{-1}\mathbf{H}_{y})$$

14.6 There are p parameters in each μ_i , $\frac{1}{2}p(p+1)$ unique parameters in each Σ_i , and g-1 unique parameters α_i . Thus the total number is

$$\begin{split} gp + g \Big[\frac{1}{2} p(p+1) \Big] + g - 1 &= g \Big[p + \frac{1}{2} p(p+1) + 1 \Big] - 1 \\ &= \frac{1}{2} g [2p + p^2 + p + 2] - 1 \\ &= \frac{1}{2} g (3p + p^2 + 2) - 1 \\ &= \frac{1}{2} g (p+1) (p+2) - 1. \end{split}$$

- **14.7** (a) The two-cluster solution from single linkage puts boy No. 20 in one cluster and the other 19 boys in the other cluster.
 - (b), (c), and (d). Based on the change in distance, average linkage and the other cluster solutions in parts (c) and (d) clearly indicate two clusters. These solutions generally agree and also correspond to a division into two groups seen in the first principal component in Figure 12.5. The separation of the three apparent outliers from the other 17 observations is less pronounced in the cluster analyses than in Figure 12.5. Note that the scale of the second component in Figure 12.5 is much larger than that of the first component, so the separation of points 9, 12, and 20 from the rest is not as large as it appears in the figure. Of the methods in parts (b), (c), and (d), only flexible beta with $\beta = -.50$ and -.75 place points 9, 12, and 20 together in one cluster. All others place 9 and 12 in one of the clusters and 20 in the other.
- **14.8** (a) The distance between centroids of the two clusters is $\sqrt{2994.9} = 54.7$.
 - **(b)** From the dendrogram produced by the average linkage method, the largest change in distance corresponds to a two-cluster solution.
 - (c) The discriminant function completely separates the two clusters, with no overlap.
- **14.9** (a) Observation 22 seems to be an outlier, because it forms its own cluster in both the single linkage and average linkage methods. The cluster consisting of observations 2, 21, 24, 26, and 30 is the same in all six methods.
 - **(b)** The discriminant function completely separates the two clusters, with no overlap.

14.10 (a) The following five clusters were found using as seeds the five observations that are mutually farthest apart.

Cluster	1	2	3	4	5
Observation(s)	9, 15, 16, 18, 19	1, 2, 3, 4, 5, 17	6, 7, 8, 20	10, 11, 12, 13	14

In the plot of the first two discriminant functions, observation 14 is relatively far removed from the rest. Clusters 1, 2, and 3 are somewhat closer to each other.

(b) The following five clusters were found using as seeds the first five observations.

Cluster	1	2	3	4	5
Observation(s)	1, 3, 4	2	5, 17, 18, 19	6, 7, 8, 15, 16, 20	9, 10, 11 12, 13, 14

The plot of the first two discriminant functions shows a pattern different from that in part (a).

(c) The following five clusters were found using as seeds the centroids of the five-cluster solution resulting from Ward's method.

Cluster	1	2	3	4	5
Observation(s)	6, 7, 8, 15, 16, 20	5, 9, 17, 18, 19	10, 11, 12, 13	1, 2, 3, 4	14

The plot of the first two discriminant functions shows a pattern similar to that found in part (a), with observation 14 isolated. The dendrogram shows that Ward's method gives the same five-cluster solution as the k-means result.

(d) The following five clusters were found using the k-means method with seeds equal to the centroids of the five clusters from average linkage.

Cluster	1	2	3	4	5
Observation(s)	6, 7, 8, 15, 16, 20	1, 2, 3, 4, 5, 17, 18, 19	10, 11, 12, 13	9	14

The plot of the first two discriminant functions shows a pattern somewhat similar to that in part (a).

- In the dendrogram for average linkage, observations 9 and 14 are isolated clusters in the five-cluster solution, which is identical to the five-cluster solution using k-means clustering with these seeds.
- (e) Observation 14 does not appear as an outlier in the plot of the first two principal components, but it does show up as an outlier in the plot of the second and third components. The solutions found in parts (a) and (c) seem to agree most with the principal component plots. This suggests that a different number of initial cluster seeds be used.
- (f) The two clustering solutions are identical. The results are given next.

Cluster	1	2	3
Observations	6, 7, 8, 15,	9, 10, 11, 12,	1, 2, 3, 4, 5,
	16, 20	13, 14	17, 18, 19

- (g) The clustering solution is identical to that found in part (f), which indicates that the three-cluster solution is appropriate.
- **14.11** The number of clusters obtained from the indicated combinations of *k* and *r* are shown in the following table. Note that for each pair of values of *k* and *r*, the value of *r* was increased if necessary for each point until *k* points were included in the sphere.

k/r	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	2.0
2	10	10	10	10	8	6	4	3	3	2
3	5	5	5	5	5	3	2	2	2	2
4	2	2	2	2	2	2	2	2	2	2
5	1	1	1	1	1	1	1	1	1	1

The maximum value of k that yields a two-cluster solution is 4.

14.12 (a) The number of clusters obtained from the initial combinations of k and r are shown in the following table. The value of r was variable, as noted in Problem 14.11.

k/r	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	2.0
2	3	3	3	3	3	3	3	3	3	3
3	2	2	2	2	2	2	2	2	2	2
4	1	1	1	1	1	1	1	1	1	1

- (b) The plot of the first two discriminant functions for k = 2 and r = 1 shows the three clusters to be well separated.
- (c) The plot of the first two principal components shows the same groupings as in the plot in part (b).

10.1002.0471271357.app2. Downloaded from https://online library.wiley.com/doi/10.1002.0471271357.app2 by Inaq Himari NPL, Wiley Online Library on [2201/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/erms-und-conditions) on Wiley Online Library for rules of use; OA uritcles as governed by the applicable Creative Common License

(d) The plot of the discriminant function shows wide separation of the two clusters, which do not overlap. The three-cluster solution found in part (b) is given next

Cluster 1	Cluster 2	Cluster 3
Harpers Morley Myerscough Sparsholt Sutton Bonington Wye	Rosemaund Terrington Headley Seale-Hayne	Cambridge Cockle Park

The two-cluster solution found in part (d) merges clusters 2 and 3 of part (b).

CHAPTER 15

15.1

$$\mathbf{B} = \left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right)\mathbf{A}\left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right)$$
$$= \mathbf{A} - \frac{1}{n}\mathbf{A}\mathbf{J} - \frac{1}{n}\mathbf{J}\mathbf{A} + \frac{1}{n^2}\mathbf{J}\mathbf{A}\mathbf{J}$$
(1)

By (2.38),

$$\frac{1}{n}\mathbf{A}\mathbf{j} = \frac{1}{n} \begin{pmatrix} \sum_{j} a_{1j} \\ \sum_{j} a_{2j} \\ \vdots \\ \sum_{j} a_{nj} \end{pmatrix} = \begin{pmatrix} \overline{a}_{1.} \\ \overline{a}_{2.} \\ \vdots \\ \overline{a}_{n.} \end{pmatrix}. \tag{2}$$

Hence,

$$\frac{1}{n}\mathbf{A}\mathbf{J} = \frac{1}{n}\mathbf{A}(\mathbf{j}, \mathbf{j}, \dots, \mathbf{j}) = \left(\frac{1}{n}\mathbf{A}\mathbf{j}, \dots, \frac{1}{n}\mathbf{A}\mathbf{j}\right)$$
$$= \begin{pmatrix} \overline{a}_{1} & \cdots & \overline{a}_{1} \\ \overline{a}_{2} & \cdots & \overline{a}_{2} \\ \vdots & & \vdots \\ \overline{a}_{n} & \cdots & \overline{a}_{n} \end{pmatrix}.$$

Show that

$$\frac{1}{n}\mathbf{J}\mathbf{A} = \begin{pmatrix} \overline{a}_{.1} & \overline{a}_{.2} & \cdots & \overline{a}_{.n} \\ \overline{a}_{.1} & \overline{a}_{.2} & \cdots & \overline{a}_{.n} \\ \vdots & \vdots & & \vdots \\ \overline{a}_{.1} & \overline{a}_{.2} & \cdots & \overline{a}_{.n} \end{pmatrix}.$$

Using equation (2), we obtain

$$\frac{1}{n^2}\mathbf{j}'\mathbf{A}\mathbf{j} = \frac{1}{n^2}(1, 1, \dots, 1) \begin{pmatrix} \sum_j a_{1j} \\ \sum_j a_{2j} \\ \vdots \\ \sum_i a_{nj} \end{pmatrix} = \frac{1}{n^2} \sum_{ij} a_{ij} = \overline{a}_{\dots}$$

By (3.63),

$$\frac{1}{n^2}\mathbf{J}\mathbf{A}\mathbf{J} = \frac{1}{n^2} \begin{pmatrix} \mathbf{j}'\mathbf{A}\mathbf{j} & \cdots & \mathbf{j}'\mathbf{A}\mathbf{j} \\ \vdots & & \vdots \\ \mathbf{j}'\mathbf{A}\mathbf{j} & \cdots & \mathbf{j}'\mathbf{A}\mathbf{j} \end{pmatrix} = \begin{pmatrix} \overline{a}_{..} & \cdots & \overline{a}_{..} \\ \vdots & & \vdots \\ \overline{a}_{..} & \cdots & \overline{a}_{..} \end{pmatrix}.$$

Hence the *ij*th element of equation (1) is $b_{ij} = a_{ij} - \overline{a}_{i.} - \overline{a}_{.j} + \overline{a}_{..}$.

15.2 (a) (Seber 1984, pp. 236–237) The elements of $\mathbf{B} = (b_{ij})$ are defined as $b_{ij} = a_{ij} - \overline{a}_{i.} - \overline{a}_{.j} + \overline{a}_{..}$, where $a_{ij} = -\frac{1}{2}\delta_{ij}^2$. Thus

$$-2a_{ij} = \delta_{ij}^2 = (\mathbf{z}_i - \mathbf{z}_j)'(\mathbf{z}_i - \mathbf{z}_j)$$
$$= \mathbf{z}_i'\mathbf{z}_i + \mathbf{z}_j'\mathbf{z}_j - 2\mathbf{z}_i'\mathbf{z}_j.$$

Then

$$-2\overline{a}_{i.} = \frac{1}{n} \sum_{j=1}^{n} (-2a_{ij}) = \frac{1}{n} \sum_{j} (\mathbf{z}_{i}' \mathbf{z}_{i} + \mathbf{z}_{j}' \mathbf{z}_{j} - 2\mathbf{z}_{i}' \mathbf{z}_{j})$$

$$= \mathbf{z}_{i}' \mathbf{z}_{i} + \frac{1}{n} \sum_{j} \mathbf{z}_{j}' \mathbf{z}_{j} - \frac{2}{n} \mathbf{z}_{i}' \sum_{j} \mathbf{z}_{j}$$

$$= \mathbf{z}_{i}' \mathbf{z}_{i} + \frac{1}{n} \sum_{j} \mathbf{z}_{j}' \mathbf{z}_{j} - 2\mathbf{z}_{i}' \overline{\mathbf{z}}.$$

Similarly, show that

$$-2\overline{a}_{.j} = \mathbf{z}'_{j}\mathbf{z}_{j} + \frac{1}{n}\sum_{i}\mathbf{z}'_{i}\mathbf{z}_{i} - 2\overline{\mathbf{z}}'\mathbf{z}_{j},$$
$$-2\overline{a}_{..} = \frac{2}{n}\sum_{i}\mathbf{z}'_{i}\mathbf{z}_{i} - 2\overline{\mathbf{z}}'\overline{\mathbf{z}}.$$

10 10020471271357 app2, Dwnbondodd from http://online library.inly.com/doi/10 library.inly.com/doi/10

Solve for a_{ij} , $\overline{a}_{i.}$, $\overline{a}_{.j}$, and $\overline{a}_{..}$ and substitute into $b_{ij} = a_{ij} - \overline{a}_{i.} - \overline{a}_{.j} + \overline{a}_{..}$ to obtain $b_{ij} = \mathbf{z}_i'\mathbf{z}_j - \mathbf{z}_i'\overline{\mathbf{z}} - \overline{\mathbf{z}}'\mathbf{z}_j + \overline{\mathbf{z}}'\overline{\mathbf{z}}$, which can be factored as $b_{ij} = (\mathbf{z}_i - \overline{\mathbf{z}})'(\mathbf{z}_j - \overline{\mathbf{z}})$. Hence

$$\mathbf{B} = \begin{pmatrix} (\mathbf{z}_{1} - \overline{\mathbf{z}})'(\mathbf{z}_{1} - \overline{\mathbf{z}}) & \cdots & (\mathbf{z}_{1} - \overline{\mathbf{z}})'(\mathbf{z}_{n} - \overline{\mathbf{z}}) \\ \vdots & & \vdots \\ (\mathbf{z}_{n} - \overline{\mathbf{z}})'(\mathbf{z}_{1} - \overline{\mathbf{z}}) & \cdots & (\mathbf{z}_{n} - \overline{\mathbf{z}})'(\mathbf{z}_{n} - \overline{\mathbf{z}}) \end{pmatrix}$$

$$= \begin{pmatrix} (\mathbf{z}_{1} - \overline{\mathbf{z}})' \\ \vdots \\ (\mathbf{z}_{n} - \overline{\mathbf{z}})' \end{pmatrix} (\mathbf{z}_{1} - \overline{\mathbf{z}}, \dots, \mathbf{z}_{n} - \overline{\mathbf{z}})$$

$$= \mathbf{Z}_{c} \mathbf{Z}'_{c} \quad [\text{see} (10.13)].$$

Thus **B** is positive semidefinite (see Section 2.7).

(b) If **B** is positive semidefinite of rank q, then by (2.109) and Section 2.11.4, **B** can be expressed in the form $\mathbf{B} = \mathbf{V}\Lambda\mathbf{V}'$, where $\mathbf{V} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ is an orthogonal matrix of eigenvectors of **B**, and Λ is a diagonal matrix of eigenvalues, q of which are positive, with the rest equal to zero. Letting Λ_1 be the $q \times q$ upper-left-hand block of Λ with positive eigenvalues and $\mathbf{V}_1 = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_q)$ be the $n \times q$ matrix with the corresponding eigenvectors, we can write $\mathbf{B} = \mathbf{V}\Lambda\mathbf{V}'$ as

$$\mathbf{B} = (\mathbf{V}_{1}, \mathbf{V}_{2}) \begin{pmatrix} \mathbf{\Lambda}_{1} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{pmatrix} \begin{pmatrix} \mathbf{V}_{1}' \\ \mathbf{V}_{2}' \end{pmatrix}$$

$$= \mathbf{V}_{1} \mathbf{\Lambda}_{1} \mathbf{V}_{1}' = \mathbf{V}_{1} \mathbf{\Lambda}_{1}^{1/2} \mathbf{\Lambda}_{1}^{1/2} \mathbf{V}_{1}'$$

$$= \mathbf{Z}\mathbf{Z}', \tag{1}$$

where the $n \times q$ matrix **Z** is

$$\mathbf{Z} = \mathbf{V}_1 \mathbf{\Lambda}_1^{1/2} = (\sqrt{\lambda_1} \mathbf{v}_1, \sqrt{\lambda_2} \mathbf{v}_2, \dots, \sqrt{\lambda_q} \mathbf{v}_q)$$

$$= \begin{pmatrix} \mathbf{z}_1' \\ \mathbf{z}_2' \\ \vdots \\ \mathbf{z}_n' \end{pmatrix}.$$

To show that $(\mathbf{z}_i - \mathbf{z}_j)'(\mathbf{z}_i - \mathbf{z}_j)$ is equal to δ_{ij}^2 , we can proceed as follows:

$$(\mathbf{z}_i - \mathbf{z}_j)'(\mathbf{z}_i - \mathbf{z}_j) = \mathbf{z}_i'\mathbf{z}_i + \mathbf{z}_j'\mathbf{z}_j - 2\mathbf{z}_i'\mathbf{z}_j.$$
(2)

By equation (1), we have

$$\mathbf{B} = \mathbf{Z}\mathbf{Z}' = \begin{pmatrix} \mathbf{z}_1' \\ \mathbf{z}_2' \\ \vdots \\ \mathbf{z}_n' \end{pmatrix} (\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n)$$

$$= \begin{pmatrix} \mathbf{z}_1' \mathbf{z}_1 & \mathbf{z}_1' \mathbf{z}_2 & \cdots & \mathbf{z}_1' \mathbf{z}_n \\ \mathbf{z}_2' \mathbf{z}_1 & \mathbf{z}_2' \mathbf{z}_2 & \cdots & \mathbf{z}_2' \mathbf{z}_n \\ \vdots & \vdots & & \vdots \\ \mathbf{z}_n' \mathbf{z}_1 & \mathbf{z}_n' \mathbf{z}_2 & \cdots & \mathbf{z}_n' \mathbf{z}_n \end{pmatrix}.$$

Hence equation (2) becomes

$$(\mathbf{z}_i - \mathbf{z}_j)'(\mathbf{z}_i - \mathbf{z}_j) = \mathbf{z}_i'\mathbf{z}_i + \mathbf{z}_j'\mathbf{z}_j - 2\mathbf{z}_i'\mathbf{z}_j$$
$$= b_{ii} + b_{jj} - 2b_{ij}. \tag{3}$$

Show that substituting $b_{ij} = a_{ij} - \overline{a}_{i.} - \overline{a}_{.j} + \overline{a}_{.i.}$ into equation (3) leads to

$$(\mathbf{z}_i - \mathbf{z}_j)'(\mathbf{z}_i - \mathbf{z}_j) = a_{ii} + a_{jj} - 2a_{ij} + \overline{a}_{i.} - \overline{a}_{.i} + \overline{a}_{.j} - \overline{a}_{j.}.$$

Show that the symmetry of **A** implies $\overline{a}_{i.} = \overline{a}_{.i}$ and $\overline{a}_{.j} = \overline{a}_{j.}$. Hence,

$$(\mathbf{z}_i - \mathbf{z}_j)'(\mathbf{z}_i - \mathbf{z}_j) = a_{ii} + a_{jj} - 2a_{ij} = -2a_{ij} = \delta_{ij}^2,$$

since
$$a_{ii} = -\frac{1}{2}\delta_{ii}^2 = 0$$
 and $-2a_{ij} = \delta_{ij}^2$.

15.3 (a)
$$\mathbf{r} = \sum_{j=1}^{b} p_{.j} \mathbf{c}_{j} = \sum_{j=1}^{b} p_{.j} \left(\frac{p_{1j}}{p_{.j}}, \frac{p_{2j}}{p_{.j}}, \dots, \frac{p_{aj}}{p_{.j}} \right)'$$

$$= \sum_{j=1}^{b} (p_{1j}, p_{2j}, \dots, p_{aj})' \quad \text{[by (2.61)]}$$

$$= (\sum_{j} p_{1j}, \sum_{j} p_{2j}, \dots, \sum_{j} p_{aj})'$$

$$= (p_{1.}, p_{2.}, \dots, p_{a.})'$$

(b)
$$\mathbf{c}' = \sum_{i=1}^{a} p_{i.} \mathbf{r}'_{i} = \sum_{i=1}^{a} p_{i} \left(\frac{p_{i1}}{p_{i.}}, \frac{p_{i2}}{p_{i.}}, \dots, \frac{p_{ib}}{p_{i.}} \right)$$

$$= \sum_{i=1}^{a} (p_{i1}, p_{i2}, \dots, p_{ib}) \quad \text{[by (2.61)]}$$

$$= (\sum_{i} p_{i1}, \sum_{i} p_{i2}, \dots, \sum_{i} p_{ib})$$

$$= (p_{.1}, p_{.2}, \dots, p_{.b})$$

15.4
$$\mathbf{j}'\mathbf{r} = \sum_{i=1}^{a} p_{i.} = \sum_{i=1}^{a} \sum_{j=1}^{b} p_{ij} = \sum_{ij} n_{ij}/n = n/n = 1,$$

 $\mathbf{c}'\mathbf{j} = \sum_{j=1}^{b} p_{.j} = \sum_{j} n_{.j}/n = \sum_{j} \sum_{i} n_{ij}/n = n/n$

10 10020471271357 app2, Dwnbonladed from http://online library.sely-com/doi/10 10020471271357 app2 by Ina Himari NPL, Wiley Online Library on 1201/2023]. See the Terns and Conditions (tips://onlinelibrary.wiley.com/terns-and-conditions) on Wiley Online Library for rules of use; OA articles as geometed by the applicable Creative Common License

15.5 By (15.8), (15.9), and (15.10), $p_{ij} = n_{ij}/n$, $p_{i.} = n_{i.}/n$, and $p_{.j} = n_{.j}/n$. Substituting these into (15.25), we obtain

$$\chi^{2} = \sum_{ij} \frac{n \left(\frac{n_{ij}}{n} - \frac{n_{i,n_{.j}}}{n^{2}}\right)^{2}}{\frac{n_{i,n_{.j}}}{n^{2}}} = \sum_{ij} \frac{n \left[\frac{1}{n} (n_{ij} - \frac{n_{i,n_{.j}}}{n})\right]^{2}}{\frac{n_{i,n_{.j}}}{n^{2}}}$$
$$= \sum_{ij} \frac{\frac{n}{n^{2}} (n_{ij} - \frac{n_{i,n_{.j}}}{n})^{2}}{\frac{n_{i,n_{.j}}}{n^{2}}} = \sum_{ij} \frac{(n_{ij} - \frac{n_{i,n_{.j}}}{n})^{2}}{\frac{n_{i,n_{.j}}}{n}}.$$

15.6 (a) Multiplying numerator and denominator of (15.25) by p_i , we obtain

$$\chi^{2} = \sum_{i} n \sum_{j} \frac{p_{i.}}{p_{i.}^{2} p_{.j}} (p_{ij} - p_{i.} p_{.j})^{2}$$

$$= \sum_{i} n p_{i.} \sum_{j} \frac{1}{p_{.j}} \left[\frac{1}{p_{i.}} (p_{ij} - p_{i.} p_{.j}) \right]^{2}$$

$$= \sum_{i} n p_{i.} \sum_{j} \left(\frac{p_{ij}}{p_{i.}} - p_{.j} \right)^{2} / p_{.j}.$$

15.7 (a) By (15.29), (15.10), (15.12), and (15.18), we obtain

$$\chi^{2} = \sum_{i} n p_{i.} (\mathbf{r}_{i} - \mathbf{c})' \mathbf{D}_{c}^{-1} (\mathbf{r}_{i} - \mathbf{c})$$

$$= \sum_{i} n p_{i.} \left(\frac{p_{i1}}{p_{i.}} - p_{.1}, \dots, \frac{p_{ib}}{p_{i.}} - p_{.b} \right) \begin{pmatrix} p_{.1} & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & p_{.b} \end{pmatrix}^{-1} \begin{pmatrix} \frac{p_{i1}}{p_{i.}} - p_{.1} \\ \vdots \\ \frac{p_{ib}}{p_{i.}} - p_{.b} \end{pmatrix}$$

$$= \sum_{i} n p_{i.} \left(\frac{\frac{p_{i1}}{p_{i.}} - p_{.1}}{p_{.1}}, \dots, \frac{\frac{p_{ib}}{p_{i.}} - p_{.b}}{p_{.b}} \right) \begin{pmatrix} \frac{p_{i1}}{p_{i.}} - p_{.1} \\ \vdots \\ \frac{p_{ib}}{p_{i.}} - p_{.b} \end{pmatrix}.$$

15.8 (a) By (15.9), $\mathbf{r} = \mathbf{P}\mathbf{j}$. Then $\mathbf{D}_r^{-1}\mathbf{r} = \mathbf{D}_r^{-1}\mathbf{P}\mathbf{j} = \mathbf{R}\mathbf{j}$ by (15.15). By (15.13), $\mathbf{r}'_i\mathbf{j} = 1$, and therefore $\mathbf{R}\mathbf{j} = \mathbf{j}$. Now

$$\mathbf{D}_r^{-1}(\mathbf{P} - \mathbf{r}\mathbf{c}') = \mathbf{D}_r^{-1}\mathbf{P} - \mathbf{D}_r^{-1}\mathbf{r}\mathbf{c}' = \mathbf{R} - \mathbf{R}\mathbf{j}\mathbf{c}' = \mathbf{R} - \mathbf{j}\mathbf{c}'.$$

15.9 By (15.49), $\mathbf{z}'_i = \mathbf{y}'_i \mathbf{A}$ (ignoring the centering on \mathbf{y}_i). Thus the squared Euclidean distance can be written as

$$(\mathbf{z}_i - \mathbf{z}_k)'(\mathbf{z}_i - \mathbf{z}_k) = (\mathbf{z}_i' - \mathbf{z}_k')(\mathbf{z}_i - \mathbf{z}_k)$$
$$= (\mathbf{y}_i' \mathbf{A} - \mathbf{y}_k' \mathbf{A})(\mathbf{A}' \mathbf{y}_i - \mathbf{A}' \mathbf{y}_k)$$

$$= (\mathbf{y}_i' - \mathbf{y}_k')\mathbf{A}\mathbf{A}'(\mathbf{y}_i - \mathbf{y}_k)$$
$$= (\mathbf{y}_i - \mathbf{y}_k)'(\mathbf{y}_i - \mathbf{y}_k),$$

since **A** is orthogonal.

15.10 (a) From $\mathbf{Y}_c \mathbf{V} = \mathbf{U} \mathbf{\Lambda}$ in (15.55), we have $\mathbf{Y}_c \mathbf{V} \mathbf{\Lambda}^{-1} = \mathbf{U}$. Then

$$\mathbf{U}\mathbf{U}' = \mathbf{Y}_c \mathbf{V} \mathbf{\Lambda}^{-1} \mathbf{\Lambda}^{-1} \mathbf{V}' \mathbf{Y}'_c$$
$$= \mathbf{Y}_c \mathbf{V} (\mathbf{\Lambda}^{-1})^2 \mathbf{V}' \mathbf{Y}'_c. \tag{1}$$

Since $(\Lambda^{-1})^2 = \operatorname{diag}(1/\lambda_1^2, 1/\lambda_2^2, \dots, 1/\lambda_p^2)$, where the λ_i^2 's are eigenvalues of $\mathbf{Y}_c'\mathbf{Y}_c$, the matrix $(\Lambda^{-1})^2$ contains eigenvalues of $(\mathbf{Y}_c'\mathbf{Y}_c)^{-1} = [(n-1)\mathbf{S}]^{-1} = \mathbf{S}^{-1}/(n-1)$ [see (2.115) and (2.116)]. The matrix \mathbf{V} contains eigenvectors of $\mathbf{Y}_c'\mathbf{Y}_c$ and thereby of $(\mathbf{Y}_c'\mathbf{Y}_c)^{-1}$ (see Section 2.11.9). Hence we recognize $\mathbf{V}(\Lambda^{-1})^2\mathbf{V}'$ as the spectral decomposition of $(\mathbf{Y}_c'\mathbf{Y}_c)^{-1}$ [see (2.109), (2.115), and (2.116)]. Therefore, equation (1) can be written as

$$\mathbf{U}\mathbf{U}' = \mathbf{Y}_c \mathbf{V} (\mathbf{\Lambda}^{-1})^2 \mathbf{V}' \mathbf{Y}'_c = \mathbf{Y}_c (\mathbf{Y}'_c \mathbf{Y}_c)^{-1} \mathbf{Y}'_c$$
$$= \mathbf{Y}_c \mathbf{S}^{-1} \mathbf{Y}'_c / (n-1).$$

(b) If $\mathbf{H} = \mathbf{V}\boldsymbol{\Lambda}$, then $\mathbf{H}\mathbf{H}' = \mathbf{V}\boldsymbol{\Lambda}\boldsymbol{\Lambda}\mathbf{V}' = \mathbf{V}\boldsymbol{\Lambda}^2\mathbf{V}'$. The diagonal matrix $\boldsymbol{\Lambda}^2$ contains the eigenvalues λ_i^2 of the matrix $\mathbf{Y}_c'\mathbf{Y}_c$. Thus by (2.115), $\mathbf{V}\boldsymbol{\Lambda}^2\mathbf{V}'$ is the spectral decomposition of $\mathbf{Y}_c'\mathbf{Y}_c$, and

$$\mathbf{H}\mathbf{H}' = \mathbf{V}\mathbf{\Lambda}^2\mathbf{V}' = \mathbf{Y}_c'\mathbf{Y}_c = (n-1)\mathbf{S}.$$

15.11 By (15.64), (3.63), and (3.64) (ignoring n - 1 and assuming the \mathbf{y}_i 's are centered),

$$(\mathbf{u}_i - \mathbf{u}_k)'(\mathbf{u}_i - \mathbf{u}_k) = \mathbf{u}_i' \mathbf{u}_i + \mathbf{u}_k' \mathbf{u}_k - 2\mathbf{u}_i' \mathbf{u}_k$$

= $\mathbf{y}_i' \mathbf{S}^{-1} \mathbf{y}_i + \mathbf{y}_k' \mathbf{S}^{-1} \mathbf{y}_k - 2\mathbf{y}_i' \mathbf{S}^{-1} \mathbf{y}_k$
= $(\mathbf{y}_i - \mathbf{y}_k)' \mathbf{S}^{-1} (\mathbf{y}_i - \mathbf{y}_k)$.

15.12 (a) The first ten rows and columns of the matrix **B** are as follows.

		-26801 2310 17029 11125 14394 -11076	17029 65973 32378 31044 -31085		14394 31044 31808 38141 -19161	-11076 -31085 -18550 -19161 14741	68156 30003 27269 -33620	-56671 -34154 -37147 27054	112101 -21852 -79481 -46882 -51673 45347	-54135 -32096 -34687 29211
١		11120								
١					501.1	1,101				
١	-73877	18149	68156		-,	-33620		_,	-86804	-/
١	81571	-18662	-56671	-34154	-37147	27054	-45782	49169	75557	50169
l	112101	-21852	-79481	-46882	-51673	45347	-86804	75557	119634	81258
'	80909	-16306	-54135	-32096	-34687	29211	-58650	50169	81258	53286 /

(b) The first two columns of the matrix **Z** are given by

City	<i>z</i> ₁	<i>Z</i> ₂	City	<i>z</i> ₁	Z2
A	354.1	-10.2	M	391.6	47.5
В	-77.1	25.0	N	21.0	-44.7
C	-238.2	-75.7	O	9.8	30.9
D	-154.9	65.9	P	-173.8	-78.5
E	-163.2	72.2	Q	6.3	17.1
F	126.0	24.9	R	117.0	-48.0
G	-228.8	-149.4	S	-102.3	-170.2
Н	223.9	1.5	T	-53.2	-27.3
I	337.7	44.8	U	-315.2	190.9
J	226.7	34.7	V	-255.7	140.2
K	-33.4	22.3	W	-19.3	-34.3
L	1.1	-79.4			

- (c) The metric multidimensional scaling plot shows the relative positions of the cities.
- **15.13** (a) The multidimensional scaling plot shows two clusters, one for positive values of the first dimension and one for negative values. The two clusters can be interpreted as comfort (positive values) and discomfort (negative values). Hence, the axis of the first dimension can be interpreted as the level of comfort.
 - (b) The dendrogram for Ward's method clearly shows two clusters, the same as in part (a).
- **15.14** (a) The initial configuration of points will vary. One example is as follows:

<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	У6
1.458	.769	-1.350	.456	-1.610	1.827
598	-1.069	-2.667	.458	.416	1.094
-1.777	409	.369	.655	058	1.177
.071	.361	1.157	154	.343	417
060	1.361	.743	1.436	.332	894
757	432	545	.233	.646	102
-1.971	492	461	.078	1.441	.039
-1.560	173	.657	528	1.001	1.030
597	.814	898	.283	355	-1.115
1.449	942	.867	922	.833	1.196
-1.809	093	-1.762	533	-1.136	226
1.067	.199	.978	.884	-1.060	800

- (b) Answers will vary. For the seeds given in part (a), STRESS = .0266.
- (c) Answers will vary. The plot of STRESS versus *k* for one solution showed that two dimensions should be retained. The nonmetric MDS plot showed that Franco, Mussolini, and Hitler were close together, as well as Churchill and DeGaulle, and Eisenhower and Truman.
- (d) Answers will vary. One solution gave results similar to part (c).

- 10.1002/047/271357_app2, Downloaded from https://calline.library.wiej.ccm/doi/10.102/0471271357.app2 by Iraq Himari N.L., Wiley Online Library on [22.01/2023]. See the Terms and Conditions (https://onlinelbritary.wiej.com/etmens-ad-conditions) on Wiley Online Library for rules of use; O.A articles are governed by the applicable Creative Common Licenses
- (e) Answers will vary. One solution showed three dimensions. A plot of two dimensions showed Mussolini and Franco together in the center with the others forming a circle around them of almost equally spaced points.
- **(f)** Answers will vary. One solution was similar to that in part (c).

15.15 (a) The correspondence matrix **P** is found by dividing each element of Table 15.16 by n = 1281 to obtain the following:

Death Birth	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
Jan.	.007	.011	.009	.011	.007	.009	.008	.012	.007	.009	.009	.010	.108
Feb.	.010	.005	.005	.006	.007	.004	.003	.004	.005	.009	.001	.010	.069
Mar.	.009	.011	.007	.005	.013	.008	.007	.008	.007	.002	.010	.007	.094
Apr.	.005	.009	.008	.005	.007	.009	.003	.009	.003	.007	.006	.009	.080
May	.006	.005	.009	.005	.003	.009	.007	.007	.009	.005	.007	.003	.075
Jun.	.011	.004	.004	.005	.010	.004	.005	.003	.006	.007	.005	.004	.069
Jul.	.009	.008	.010	.003	.004	.009	.005	.005	.003	.008	.003	.006	.073
Aug.	.005	.005	.009	.010	.008	.007	.002	.006	.006	.006	.006	.009	.081
Sep.	.005	.009	.009	.008	.008	.009	.003	.006	.009	.005	.006	.005	.083
Oct.	.012	.006	.009	.007	.005	.008	.009	.006	.007	.006	.005	.005	.087
Nov.	.005	.007	.012	.008	.009	.008	.005	.008	.005	.008	.007	.005	.087
Dec.	.005	.014	.007	.009	.011	.006	.007	.007	.008	.005	.008	.006	.092
Total	.092	.094	.096	.084	.092	.088	.066	.080	.077	.075	.074	.081	1.000

(b) The **R** matrix is given by

$$\mathbf{R} = \begin{pmatrix} .07 & .11 & .12 & .11 & .07 & .04 & .11 & .10 & .09 & .08 & .09 & .04 \\ .13 & .08 & .12 & .07 & .07 & .03 & .09 & .11 & .10 & .08 & .08 & .08 \\ .09 & .08 & .07 & .15 & .05 & .08 & .07 & .08 & .12 & .08 & .05 & .08 \\ .09 & .06 & .15 & .08 & .15 & .04 & .06 & .07 & .10 & .01 & .12 & .08 \\ .10 & .11 & .09 & .10 & .07 & .07 & .08 & .09 & .07 & .08 & .08 & .07 \\ .04 & .06 & .09 & .11 & .13 & .07 & .12 & .14 & .05 & .04 & .11 & .04 \\ .08 & .04 & .06 & .06 & .16 & .08 & .06 & .06 & .15 & .08 & .10 & .09 \\ .06 & .08 & .07 & .12 & .10 & .07 & .08 & .07 & .14 & .11 & .02 & .07 \\ .07 & .09 & .04 & .06 & .08 & .09 & .13 & .11 & .04 & .09 & .06 & .11 \\ .09 & .09 & .05 & .08 & .06 & .06 & .09 & .14 & .10 & .08 & .09 & .06 \\ .08 & .07 & .06 & .07 & .14 & .11 & .09 & .10 & .06 & .06 & .07 & .08 \\ .09 & .08 & .07 & .11 & .07 & .04 & .10 & .10 & .09 & .08 & .06 & .11 \end{pmatrix}$$

and the C matrix is given by

- 10.1002/047/271357_app2, Downloaded from https://calline.library.wiej.ccm/doi/10.102/0471271357.app2 by Iraq Himari N.L., Wiley Online Library on [22.01/2023]. See the Terms and Conditions (https://onlinelbritary.wiej.com/etmens-ad-conditions) on Wiley Online Library for rules of use; O.A articles are governed by the applicable Creative Common Licenses
- (c) The chi-square statistic is 117.7742 with 121 degrees of freedom, which gives a *p*-value of .5660. The two variables appear to be independent.
- (d) In the correspondence plot, the following associations are seen: {November births, June deaths}, {March deaths, April deaths, January births}, {September births, February deaths}, {August births, April births}, {May deaths, September deaths, May births}.
- **15.16** (a) The correspondence matrix **P** is found by dividing each element of Table 15.17 by 8193 to obtain the following:

Part of Country	Burglary	Fraud	Vandalism	Total
Oslo area	.048	.300	.215	.563
Mid Norway	.018	.019	.112	.148
North Norway	.085	.040	.164	.289
Total	.151	.358	.491	1.000

(b) The **R** matrix is given by

Part of Country	Burglary	Fraud	Vandalism
Oslo area	.086	.533	.381
Mid Norway	.121	.126	.753
North Norway	.293	.138	.569

and the C matrix is

Part of Country	Burglary	Fraud	Vandalism
Oslo area	.320	.837	.437
Mid Norway	.119	.052	.228
North Norway	.561	.111	.335

- (c) The chi-square statistic is 1662.6 with 4 degrees of freedom, which gives a *p*-value less than .0001. The two variables are dependent.
- (d) In the correspondence plot, North Norway is associated with burglaries, Oslo is associated with fraud, and Mid Norway is associated with vandalism.

15.17 (a) The Burt matrix is as follows.

, ,														
No	5254	0	564	3408	1282	1830	3424	2466	2788	2190	3064	686	2666	1902
Yes	0	165	105	42	18	73	92	37	128	4	125	26	63	76
High dust	564	105	669	0	0	402	267	62	607	218	451	87	359	223
Low dust	3408	42	0	3450	0	1056	2394	1642	1808	1446	2004	480	1684	1286
Medium	1282	18	0	0	1300	445	855	799	501	566	734	145	686	469
dust														
Race—	1830	73	402	1056	445	1930	0	932	971	799	1104	108	1658	137
Other White	3424	92	267	2394	855	0	3516	1571	1945	1431	2085	604	1071	1841
	3727)	207	2374	055	U	3310	1371	1743	1431	2003	00-	1071	10+1
Female	2466	37	62	1642	799	932	1571	2503	0	1373	1130	266	1421	816
Male	2788	128	607	1808	501	971	1945	0	2916	857	2059	446	1308	1162
Nonsmoker	2190	40	218	1446	566	799	1431	1373	857	2230	0	231	1142	857
Smoker	3064	125	451	2004	734	1104	2085	1130	2059	0	3189	481	1587	1121
10–20	686	26	87	480	145	108	604	266	446	231	481	712	0	0
≤ 10	2666	63	359	1684	686	1658	1071	1421	1308	1142	1587	0	2729	0
≥ 20	1902	76	223	1286	469	137	1841	816	1162	857	1121	0	0	1978

(b) The column coordinates for the plot are given by

Variables	y_1	y_2
No	032	087
Yes	1.013	2.761
High dust	1.072	1.648
Low dust	209	107
Medium dust	.003	564
Race—Other	1.184	153
White	641	.083
Female	.007	791
Male	006	.679
Nonsmoker	036	592
Smoker	.025	.414
10-20	605	.535
≤ 10	.789	300
≥ 20	871	.221

(c) Some associations seen in the plot are {byssinosis-yes, high dust}, {female, nonsmoker, medium dust}, {smoker, male}.

15.18 (a) The two-dimensional coordinates of the observation points and variable points are

	Observation Points	
Name	Coordinate 1	Coordinate 2
Albania	14.102	-1.322
Austria	-5.461	1.548
Belgium	-6.077	-1.479
Bulgaria	26.116	3.319
Czech.	3.317	-2.092
Denmark	-13.861	1.374
E. Germany	-4.902	-8.360
Finland	-12.262	11.290
France	-6.345	.672
Greece	9.036	3.033
Hungary	10.805	-2.363
Ireland	-11.857	5.312
Italy	6.309	-1.314
Netherlands	-11.809	2.133
Norway	-11.005	077
Poland	2.526	2.999
Portugal	.784	-16.753
Romania	19.067	2.591
Spain	1.923	-10.483
Sweden	-14.842	.726
Switzerland	-9.068	4.000
UK	-9.311	.698
USSR	10.586	4.355
W. Germany	-13.514	-3.353
Yugoslavia	25.742	3.548

Name	Coordinate 1	Coordinate 2
R_MEAT	151	.133
W_MEAT	129	.043
EGGS	067	.021
MILK	425	.831
FISH	127	292
CEREALS	.861	.406
STARCHY	067	076
NUTS	.114	070

.020

FRUT_VEG

Variable Points

In the biplot, the arrows for variables are too short to pass through the points for observations.

-.169

.131

10.10020471271357.app2, Dwnloaded from thtc//caline library viely, com/doi/10.1020471271357.app2 by Inag Himarl NPL, Wiley Online Library on [22012/023]. See the Terra and Conditions (thps://onlinelibrary-wiley, comberns-and-conditions) on Wiley Online Library for rules of use; OA articles as governed by the applicable Creater Common Licenses

(b) The two-dimensional coordinates of the observation points and variable points are given next.

	Observation Points	
Name	Coordinate 1	Coordinate 2
Albania	.231	049
Austria	089	.057
Belgium	100	055
Bulgaria	.428	.122
Czech.	.054	077
Denmark	227	.051
E. Germany	080	308
Finland	201	.416
France	104	.025
Greece	.148	.112
Hungary	.177	087
Ireland	194	.196
Italy	.103	048
Netherlands	193	.079
Norway	180	003
Poland	.041	.110
Portugal	.013	617
Romania	.312	.095
Spain	.032	386
Sweden	243	.027
Switzerland	149	.147
UK	153	.026
USSR	.173	.160
W. Germany	221	124

Variable Points

.422

Yugoslavia

Name	Coordinate 1	Coordinate 2
R_MEAT	-9.196	3.602
W_MEAT	-7.904	1.179
EGGS	-4.106	.569
MILK	-25.964	22.552
FISH	-7.750	-7.934
CEREALS	52.545	11.025
STARCHY	-4.080	-2.064
NUTS	6.953	-1.902
FRUT_VEG	1.235	-4.593

In the biplot, the observation points are tightly clustered around the point (0,0), making them difficult to distinguish, whereas variable points are easily discerned. Red meats, white meats, and milk are highly posi-

(c) The two-dimensional coordinates of the observation points and variable points are as follows.

Observation Points

Name	Coordinate 1	Coordinate 2
Albania	1.805	254
Austria	699	.297
Belgium	778	284
Bulgaria	3.343	.637
Czech.	.425	402
Denmark	-1.774	.264
E. Germany	627	-1.605
Finland	-1.570	2.167
France	812	.129
Greece	1.157	.582
Hungary	1.383	454
Ireland	-1.518	1.020
Italy	.808	252
Netherlands	-1.511	.409
Norway	-1.409	015
Poland	.323	.576
Portugal	.100	-3.216
Romania	2.441	.497
Spain	.246	-2.012
Sweden	-1.900	.139
Switzerland	-1.161	.768
UK	-1.192	.134
USSR	1.355	.836
W. Germany	-1.730	644
Yugoslavia	3.295	.681

Variable Points

Name	Coordinate 1	Coordinate 2
R_MEAT	-1.177	.691
W_MEAT	-1.012	.226
EGGS	526	.109
MILK	-3.323	4.329
FISH	992	-1.523
CEREALS	6.726	2.116
STARCHY	522	396
NUTS	.890	365
FRUIT_VEG	.158	882

In the biplot, the variable points and observation points are both well spaced. Finland scored high on the milk variable. Yugoslavia and Bulgaria scored high on the cereal variable. Spain and Portugal scored highest on the fish and frut_veg variables.

- (d) The biplot from part (c) seems better because the scales on the variables and points are more evenly matched.
- **15.19** (a) The two-dimensional coordinates of the observation points and variable points are as follows.

\sim 1		Points
Lincer	varion	POINTS

Name	Coordinate 1	Coordinate 2
FSM1	-9.535	-4.752
Sister	2.705	.796
FSM2	4.043	584
Father	4.392	.614
Teacher	-8.708	5.008
MSM	3.409	.701
FSM3	3.694	-1.782

Variable Points

Name	Coordinate 1	Coordinate 2
KIND	.610	054
INTEL	.085	.413
HAPPY	.407	456
LIKE	.621	039
JUST	.264	.785

In the biplot, the arrows for the variables are too short to pass through the points for observations.

(b) The two-dimensional coordinates of the observation points and variable points are as follows.

Observation Points

Name	Coordinate 1	Coordinate 2
FSM1	622	655
Sister	.176	.110
FSM2	.264	080
Father	.287	.085
Teacher	568	.690
MSM	.222	.097
FSM3	.241	246

1/2	ria	h	<u> </u>	ν,	1	n	tc

Name	Coordinate 1	Coordinate 2
KIND	9.345	391
INTEL	1.298	2.997
HAPPY	6.235	-3.313
LIKE	9.521	282
JUST	4.054	5.700

In the biplot, the observation points are tightly clustered around the point (0,0), making them difficult to distinguish, whereas variable points are well spaced. Just and intelligent are highly positively correlated, as are kind and likeable.

(c) The two-dimensional coordinates of the observation points and variable points are as follows.

Observation Points

Name	Coordinate 1	Coordinate 2
FSM1	-2.435	-1.764
Sister	.691	.295
FSM2	1.033	217
Father	1.122	.228
Teacher	-2.224	1.859
MSM	.871	.260
FSM3	.943	662

Variable Points

Name	Coordinate 1	Coordinate 2
KIND	2.387	145
INTEL	.331	1.113
HAPPY	1.593	-1.230
LIKE	2.432	105
JUST	1.036	2.116

In the biplot, the variable points and observation points are both well spaced. Father, sister, FSM2, and FSM3 all scored high on the kind, likeable, and happy variables, whereas teacher and FSM1 scored negatively on those variables.

(d) The biplot from part (c) seems better because the scales on the variables and points are more evenly matched.

15.20 (a) The two-dimensional coordinates of the observation points and variable points are as follows:

\sim 1		D
()hca	rvation	Dointe

Name	Coordinate 1	Coordinate 2
1	49.410	-5.832
2	25.407	-7.658
3	21.600	-2.340
4	-23.545	-6.367
5	-28.477	-4.773
6	-33.341	2.315
7	-28.176	7.992
8	-25.786	12.655
9	-29.703	9.275
10	-33.868	-3.776
11	-33.529	-1.977
12	28.186	-16.031
13	10.804	-6.608
14	.566	3.021
15	77.970	.109
16	12.859	16.294
17	41.960	5.103
18	46.930	19.064
19	34.958	-1.018
20	-16.477	1.148
21	-23.634	-1.055
22	-34.036	-2.424
23	20.632	-5.882
24	-15.873	-6.731
25	-23.023	.745
26	-15.183	-1.942
27	-11.903	-6.917
28	5.273	3.610

Variable Points

Name	Coordinate 1	Coordinate 2
North	.526	.225
East	.429	.752
South	.579	379
West	.452	490

In the biplot, the variable points are tightly grouped and the corresponding arrows do not pass through the points for observations.

(b) The two-dimensional coordinates of the observation points and variable points are as follows:

Obser	vation	Points	
CONCI	varioni	FOILIS	

Name	Coordinate 1	Coordinate 2
1	.303	145
2	.156	191
3	.132	058
4	144	158
5	175	119
6	205	.058
7	173	.199
8	158	.315
9	182	.231
10	208	094
11	206	049
12	.173	399
13	.066	164
14	.003	.075
15	.478	.003
16	.079	.406
17	.257	.127
18	.288	.474
19	.214	025
20	101	.029
21	145	026
22	209	060
23	.127	146
24	097	168
25	141	.019
26	093	048
27	073	172
28	.032	.090

Variable Points

Name	Coordinate 1	Coordinate 2
North	85.779	9.026
East	69.899	30.223
South	94.377	-15.213
West	73.682	-19.694

In the biplot, the observation points are tightly clustered around the point (0,0), making them difficult to distinguish, whereas variable points are well spaced. All the variables are positively correlated, with south and west showing the closest relationship.

(c) The two-dimensional coordinates of the observation points and variable points are as follows:

\sim 1		D
()hce	rwation	Points

Name	Coordinate 1	Coordinate 2
1	3.870	920
2	1.990	-1.208
3	1.692	369
4	-1.844	-1.004
5	-2.230	753
6	-2.611	.365
7	-2.207	1.261
8	-2.020	1.996
9	-2.326	1.463
10	-2.652	596
11	-2.626	312
12	2.207	-2.529
13	.846	-1.042
14	.044	.477
15	6.106	.017
16	1.007	2.571
17	3.286	.805
18	3.675	3.008
19	2.738	161
20	-1.290	.181
21	-1.851	166
22	-2.666	382
23	1.616	928
24	-1.243	-1.062
25	-1.803	.118
26	-1.189	306
27	932	-1.091
28	.413	.569

Variable Points

Name	Coordinate 1	Coordinate 2
North	6.718	1.424
East	5.474	4.768
South	7.391	-2.400
West	5.771	-3.107

In the biplot, the variable points and observation points are both well spaced. Tree 18 is associated with east, 17 with north, 1 and 3 with south, and 2 and 23 with west.

(d) The biplot from part (c) seems better because the scales on the variables and points are more evenly matched.